

SHORT- AND LONG-TERM SETTLEMENT PROPERTIES OF MBT WASTE

Authors: Assoc. Prof. Igor Petrovic; igor.petrovic@gfv.unizg.hr

Nikola Kaniski, MEng EE Nikola Hrncic, MEng CE Dino Bosilj, MEng EE

9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE 2022

QUICK OVERVIEW

- 1. INTRODUCTION
- 2. MATERIALS AND METHODS
- 3. RESULTS
- 4. CONCLUSIONS

Waste Management Center Marišćina, Croatia

- Mechanical biological treatment of municipal solid waste in Croatia.
- Mechanical treatment: recovering recyclables
- Biological treatment: biodrying.
- There are **two active** waste management centers in Croatia so far.
- Methanogenic fraction (<25 mm).

Taken from: https://www.ekoplus.hr/mariscina.php

1. INTRODUCTION

BIOREACTOR LANDFILL

Taken from: Repa, E. W. (2003). Bioreactor landfills: a viable technology. NSWMA Research Bulletin 03-02

2. MATERIALS AND METHODS - SAMPLES

2. MATERIALS AND METHODS – BASIC GEOTECHNICAL PROPERTIES OF TESTED MATERIAL

The average values of organic content by mass for the winter and summer samples were 51.6 % and 55.3 %, respectively. The average solid particle densities for the winter and summer ORRF samples were 1.89 g/cm³ and 1.82 g/cm³, respectively.

Based on the laboratory test results, it can be concluded that there was no significant difference between the winter and summer ORRF samples.

2. MATERIALS AND METHODS – EXPERIMENTAL PROCEDURE

- Four samples.
- Three shor-term test under various wet conditions (dry; wet; dry-wet)
- One long-term test under dry-wet conditions with landfill gass measurements.

2. MATERIALS AND METHODS – OEDOMETER TEST

2. MATERIALS AND METHODS – COMPRESSION PARAMETERS

$$C_c = \frac{-\Delta e}{\Delta log\sigma_v} \ (1)$$

where Δe is the corresponding change in the void ratio and $\Delta log \sigma_v$ is the corresponding increment of vertical stress.

$$C_{\alpha} = \frac{-\Delta e}{\log t/t_m} \tag{2}$$

where Δe is the corresponding change in the void ratio and t_m is the reference time for mechanical creep.

$$C_{\alpha B} = (1 + e_b) \frac{-\Delta \varepsilon}{\log t/t_b} (3)$$

where $\Delta \varepsilon$ is the corresponding change in the vertical strain, t_b is the reference time for the degradation-induced compression, and e_b is the corresponding void ratio at the beginning of the degradation process.

3. EXPERIMENTAL RESULTS – BASIC GEOTECHNICAL PROPERTIES AT THE END OF THE TEST

Sample	ρ (α/cm ³)	w (%)	ρ _d (α/cm ³)	Void ratio
#1	0.55	0	0.55	2.42
#2	1.25	57	0.80	1.38
#3	1.31	57	0.83	1.27
#4	/ - 0.91	/ - 68	0.65*- 0.54**	1.79*- 2.80**

5. EXPERIMENTAL RESULTS – SHORT TERM TESTS

5. EXPERIMENTAL RESULTS – SHORT TERM TESTS

Sample	#1	#2	#3	#4
Stress	C_{α}	C_{lpha}	C_{lpha}	C_{lpha}
increment	[1]	[1]	[1]	[1]
1	0.0185	0.0815	0.0213	0.0335
2	0.0218	0.0393	0.0044	0.0054
3	0.0161	0.0569	0.0173	0.0129
4	0.0162	0.0468	0.0146	0.0114
4—wet	-	-	-	0.0488*
5	0.0171	0.0331	0.0257	-
6	0.0178	0.0241	0.0222	-

5. EXPERIMENTAL RESULTS – LONG TERM TEST

6. CONCLUSIONS

- THE CALCULATED IMMEDIATE COMPRESSION INDEX VALUES RANGED FROM 0.77 TO 1.27, FOR THE SHORT-TERM TEST SAMPLES #1, #2, AND #3, WHILE THE CALCULATED IMMEDIATE COMPRESSION INDEX VALUE FOR THE LONG-TERM TEST SAMPLE #4 WAS 0.60.
- BIODEGRADATION WAS VERIFIED BY METHANE GAS CONCENTRATION MEASUREMENTS CONDUCTED FOR THE DURATION OF THE LONG-TERM COMPRESSION TEST. THE CORRESPONDING BIOCOMPRESSION INDEX RETURNED A VALUE OF 0.122.

THANK YOU FOR YOUR ATTENTION

• PROJECT NAME:

Testing and modelling of mechanical behavior of biodryed waste as a waste-to-energy prerequisite

• FUNDING:

Croatian science foundation under the project UIP-2017-05-5157

• DURATION OF THE PROJECT:

01.01.2018 - 31.12.2022

 FOR MORE INFORMATION ABOUT THE RESEARCH ITSELF: <u>http://wte.gfv.hr/index_en.html</u>

Taken from: https://www.ekoplus.hr/mariscina.php