

BIOGAS CALCULATION TOOL FOR THEORETICAL BIOMETHANE PRODUCTION

H.J. Laavi, M. Nasrullah, E. Sapei, T.T. Piira, H. Pastinen-Kurula, P. Laulumaa

Biogas calculation tool for theoretical biomethane production by Laavi et al.

CONTENT

- Biowaste as feedstock for biogas
- Motivation to build a biogas calculation tool
- Anaerobic digestion through Buswell-Boyle approach
- Case studies for small scale biowaste production
 - Manures (chicken, swine, beef feedlot, cattle/cow)
 - Agricultural waste
- Conclusions

BIOWASTE AS FEEDSTOCK FOR BIOGAS

BIOWASTE AS FEEDSTOCK FOR BIOGAS

- In Europe, 120 140 million tons biowaste annually
- Biowaste produces methane
 - If not captured, released to atmosphere
- If harvested, both methane and fertilizer can be produced
 - Biomethane can replace fossil fuel

MOTIVATION TO BUILD A BIOGAS CALCULATION TOOL

MOTIVATION TO BUILD A BIOGAS CALCULATION TOOL

- Small to medium size biowaste producers often not involved in biogas production
 - Small volumes of biowaste production
 - Expensive and laborous feasibility studies in contrast to relatively low revenues
 - Joining a larger biowaste treatment plant may be complicated or have long distances

Need for a quick and easy tool for small to medium size biowaste producers to reduce methane emissions and increase biofuel production level

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$\begin{aligned} C_a H_b O_c N_d S_e + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right) H_2 O \to \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right) C H_4 + \\ \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right) C O_2 + dN H_3 + e H_2 S \end{aligned}$$

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$\begin{aligned} C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right)H_{2}O &\to \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right)CH_{4} + \\ \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right)CO_{2} + dNH_{3} + eH_{2}S \end{aligned}$$

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$\begin{aligned} C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right)H_{2}O \rightarrow \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right)CH_{4} + \\ \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right)CO_{2} + dNH_{3} + eH_{2}S \end{aligned}$$

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right)H_{2}O \rightarrow \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right)CH_{4} + \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right)CO_{2} + dNH_{3} + eH_{2}S$$

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right)H_{2}O \rightarrow \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right)CH_{4} + \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right)CO_{2} + dNH_{3} + eH_{2}S$$

 Biological degradation produces biogas with only four components: methane, carbon dioxide, ammonia, and hydrogen sulphide

$$C_{a}H_{b}O_{c}N_{d}S_{e} + \left(a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2}\right)H_{2}O \rightarrow \left(\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4}\right)CH_{4} + \left(\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4}\right)CO_{2} + dNH_{3} + eH_{2}S$$

- GOOD: Serves a quick and easy theoretical basis for bthe calculation of biogas production
 - Only elemental analysis required, inert fraction and moisture fraction
- CHALLENGING: Assumes 100% degradation
 - To avoid too optimistic yields, assessment of biodegradable factor and/or total conversion

Development of database with degradation factors

CASE STUDIES Manures and agricultural waste

CASE STUDIES FOR SMALL SCALE BIOWASTE PRODUCTION

	Quantity	Biowaste	Biomethane production
		production	potential (BMP)
		t _{vs} /a	m ³ CH ₄ /t _{VS}
Manure, chicken	1000 hens	11	263
Manure, swine	10 sows	6.24	413
Manure, beef feedlot	10 animals	11.0	300
Manure, cattle/cow	10 cows	23.9	255
Waste, agricultural (maize)	1 ha of area	6.68	288

CASE STUDY FEEDSTOCKS COMPOSITIONS (wt-%)

FEEDSTOCK DEGRADATION FACTORS

CALCULATED BIOGAS COMPOSITION

Biogas calculation tool for theoretical biomethane production by Laavi et al.

ANNUAL BIOGAS PRODUCTION(t/a)

CALCULATED BIOWASTE PRODUCTION

World wide experimental data requires correction factor for Finland

	TBMP 100 %	TBMP with f _d	BMP	f _{d,Fl}	
	t/a	t/a	t/a	%	
Manure, chicken	4.28	3.43	1.90	44.3	
Manure, swine	2.87	2.29	1.69	59.0	
Manure, beef feedlot	4.33	3.47	2.16	49.9	
Manure, cattle/cow	8.31	4.32	4.00	48.1	
Waste, agricultural (maize)	2.53	1.90	1.26	49.8	

CONCLUSIONS

CONCLUSIONS

- Buswell-Boyle functions as a basis for a quick and easy tool
- Important to get small players in to replace fossil fuels with biofuels
- Small farms produce significant amounts of biomethane
 - With 10 cows several tons of biomethane annually
 - With 1 ha of area maize 1 ton biomethane annually
 - With 1000 hens or 10 swines/beef feedlot about 2 tons of biomethane
- Need for database to adjust theoretical biogas production to match the local biomethane production

Thank you for your attention!

Helena Laavi

helena.laavi@chemitec.fi

www.chemitec.fi