

Anaerobic digestion of urban bio-waste and utilization of digestate as a nutrients source for biogas upgrading

P. Tsapekos¹, B. Khoshnevisan², X. Zhu³, L. Treu⁴, P.G. Kougias⁵, I. Angelidaki¹

¹ Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark

- ² Department of Green Technology, University of Southern Denmark, Odense DK-5230, Denmark
- ³ School of Engineering, Westlake University, Cloud Town, Xihu District, Hangzhou, Zhejiang Province, China
- ⁴ Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padova, Italy
- ⁵ Institute of Animal Science, Hellenic Agricultural Organisation Demeter, Paralimni 58100, Greece

Power-to-X and role of gas

https://www.dtu.dk/english/news/nyhed?id=%7BAC41C8C0-13CF-4568-A247-58996DF8D0D8%7D

Denmark Accelerates Power-to-X Push with DKK 1.25 Billion Subsidy Scheme

Ørsted to pilot green H2 in Denmark with Siemens Gamesa offshore turbines

Demonstration project H2RES

Orsted plans 'world first' 5GW offshore wind energy island

Hub based on Baltic island of Bornholm could link Denmark with Poland, Germany and Sweden and produce green hydrogen

VindØ - The world's first energy island HVDCsystems Powerdook system Helpopter landing Operations inaroau Accommodation foculties Dependions inaroau Accommodation foculties

Glimpse of the future: Danes unveil vision of world's first artificial energy island

Group of pension funds and utility Andel reveal animation showing North Sea island linked to offshore wind

Biogas in Denmark

- Most biomethane per capita upgraded to the gas system
- 2nd in absolute numbers in EU after Germany
- Aim to have 40% biomethane by 2025

Biomethanation and circular economy

Project VARGA (Water Resource Recovery Facility)

Objectives

- Improve biogas productivity using urban biowaste
- Explore digested biowaste as nutrient source for biomethanation
- Explore changes on microbial communities
- Validate process efficiency at up-scaled operation

Lab scale operation

Inoculum (v/v): 10%

50%

100%

Pilot scale operation

Lab scale: Start-up operation

Highlights

- Low inoculation volume: lag phase increase and acidification incidents
- Steady-state: similar process efficiency

Lab scale: Long-term operation

Highlights

- Similar performance of triplicates
- Stable production
- Steady increase of CH₄ productivity
- No pH drops
- No VFA accumulation

Pilot scale anaerobic digestion

Operational challenges

- Temperature fluctuations (0-15 d)
- Mixing malfunctioning (110-150 d)
- Alternating feeding (whole duration)

Highlights

- Lag phase <20 d
- VFA accumulation during lag phase
- Stable pH
- Similar efficiency with lab scale at steady-state

Overall microbial communities

Lab-scale microbiome

AD Microbiome:

- Initially composed of *Clostridiales* and *Bacteroidales*
- Syntophomans schinkii -potential SAO -and Methanobacterium genera that grown in syntrophy
- Adaptation at the operational conditions

Increased OLR led to:

- Bacteria: Augmentation of Synergistetes members
- Archaea: Methanosarcinales and Methanobacteriales
- Overall: Transition to versatile acetoclastic/ hydrogenotrophic methanogenic pathway

dominant order. Lab: 🗸

Bacteroidales was the most

DTU

 The predominance of these microbes was eliminated over operational time. Lab:

Pilot scale microbiome

- S. schinkii OTU111 dominated the microbial community at the end; Lab: X
- Methanobacterium spp.
 dominated the archaeal
 population at the end; Lab: V

Pilot scale biomethanation

Microbial composition

274

Conclusions

Lab scale biogas production

- Stable performance at increased loading rates and long term operation
- Microbiomes at biological triplicates followed a similar pattern

Pilot scale biogas production

- Similar productivity with the lab-scale operation
- Robust microbiome was formed to alleviate process imbalances

Pilot scale biogas upgrading

- Digested biowaste can be used a suitable and cheap source of nutrients
- Production of biomethane complying with gas grid injection (>95% CH₄)

Thank you for your attention!!!

This work was supported by

- EUDP: eFuel Electro fuel from a bio-trickling filter
- MUDP: Lighthouse VARGA (Water Resource Recovery Facility)

