EFFECTS OF FISH WASTE ADDITION ON ANAEROBIC CO-DIGESTION OF SLUDGE WITH FOOD WASTE

PRESENTED BY SUJIN CHOI ACADEMIC ADVISOR PROF. SEOKHWAN HWANG BIOENGINEERS FOR ENVIRONMENTAL SCIENCE AND TECHNOLOGY LAB. (B.E.S.T) POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY (POSTECH)

Division of Environmental Science & Engineering, POSTECH

Problem statement, Objective and

Hypothesis

- Problem Statement
- Why fish waste? >> In South Korea, total production of fish was about 2.3 million tons in 2019 and domestic consumption of fishery products was
 65.9 kg/person/year!!
- Is fish waste a promising substrate for AD? >> Yes! It contains high proteins and lipids
- What's the problem? >> Fish waste degradation intermediates, including LCFAs and ammonia, lead to the system instability
- Can we add fish waste (unexpected substrate) to the stable AD digesters?
- Objective
- To find the optimal concentration (v/v) of fish waste that can be co-digested with Food waste and Sludge mixture
- Hypothesis
- Addition of fish waste will improve the methane production

Fish Spike Pretest Operation Flowchart

Results: pH and cumulative biogas

amount

- pH
- 1% and 5% fish waste showed similar pH to the control (abt pH 7.5)
- 10% fish waste showed pH dropped to 6.8, then recovered after 5 days to abt pH 7.5
- 15% fish waste showed pH dropped to 6.5, then recovered after 11 days to abt pH 7.5
- No pH recovery found in 20% fish waste (pH 6.4)
- Cumulative methane production
- 5% fish waste showed the highest cumulative methane production (31% increased)
- Methane production reduced 36.6, 55.7 and 94.4% when 10, 15, and 20% v/v of fish waste were added

l Research Activity	Fish Spike Experiment	5
Questions r	eed to be	
answered	d fish waste spike to the stable digester in semi-continuous operation (while still keeping feeding with its substrate))

2. Will the sequential feeding of fish waste spike improve the performance of the operation?

without causing any inhibition to the system?

Independent Variables

- Fish spike feeding amount

(no fish waste VS 5% Fish waste spike)

Dependent Variables

- pH
- Biogas production
- Recovery pattern

Criteria for fish spike injection

- pH > 7.6
- TVFA < 1g/L, HPr:HAc ratio <1.4
- Biogas production ±5% compared with CTRL

Results: Fish Spike

Experiment

■ pH

- 5% fish waste showed similar pH to the control (about pH 7.6) during first 2 injection
- However, pH in 5% Fish waste spike was increasing as the fish waste injection continued

Results: Fish Spike

Experiment

- Daily methane production
- Adding 5% fish waste spike improved the methane production

Methane Production (mL/mL/d)

Major

findings

- 5% fish waste spike improved methane production both in batch mode and semi-continuous mode
- Fish spike can be occasionally introduced to the existing AD system without causing system failure

Further

study

- To find the key microbes involved in a sudden change of substrate (fish spike) and recovery period
- To investigate the relationship between microbial shifts and changes in process performance

Thank You

http://best.postech.ac.kr

Division of Environmental Science & Engineering, POSTECH

