Effect of thermal and thermo-chemical pre-treatments on OFMSW anaerobic digestion

M. De Sanctis, V.G. Altieri, S. Pentassuglia, C. Di Iaconi Email: marco.desanctis@ba.irsa.cnr.it

Background

- Nowadays waste disposal in landfills is more and more limited, nevertheless 12% global CH₄ emissions are related to organic waste landfilling.
- According to European Union 65% of municipal solid waste (MSW) must be recycled by 2035.
- □ 486 Kg of MSW per capita (Eurostat, 2019).
- Organic Fraction of Municipal Solid Waste (OFMSW) represent 40–60% of the MSW produced in EU (Eurostat, 2019).

Background

OFMSW composition:Domestic kitchen – Restaurants wastesGardening wastesFarmers market or supermarkets wastesOther domestic wastes

Current strategies for OFMSW in EU:64% anaerobic digestion26% composting10% other treatments

Current limitations OFMSW as feed for mesophilic anaerobic () digestion (AD)

- Contains recalcitrant or slowly-degradable compounds
- High percentage of particulate organic matter

High heterogenity

- Hydrolyzation represents the rate-limiting step of AD process
- □ Limited overall AD effectiveness
- Typical hydraulic retention time (HRT) in the range: 15-20 d

4

Proposed approach

Thermal and thermo-chemical pre-treatment in order to improve organic matter solubilization or enanche particulate organic matter biodegradability

Test conditions

Working volume: 700 mL

HRT: 19 d

```
Temperature: 35 ± 1 °C
```

Composition: diluted OFMSW + sewage (Blank: Sewage + tap water)

F/M ~ 1:1 (VS/VS)

Investigated pre-treatment:

- Shredding
- Shredding + thermal treatment (121°C, 20 min)
- Shredding + thermo-alkali (NaOH) treatment (121°C, 20 min, pH: 10)
- Shredding + thermo-acid (HCI) treatment (121°C, 20 min, pH: 2)

IRSA

CNR

5

OFMSW characteriziation

(after shredding)

racteriziation redding)	
Parameter (%VS)	Average ± St. dev.
Grease	8.3 ± 1.2
Starch/Hemicellulose	25.8 ± 3.1
Cellulose	7.1 ± 1.5
Lignin	10.7 ± 2.3
Galacturonic acid	6.1 ± 0.9
Glucose	3.3 ± 0.4
Fructose	5.6 ± 0.6

Parameter	Average ± St. dev.		
COD (g/L)	280.5 ± 134.9		
sCOD (g/L)	155.0 ± 79.8		
TN (g/L)	3.27 ± 1.71		
TP (g/L)	0.34 ± 0.12		
TSS (g/L)	108.3 ± 51.8		
VSS/TSS (%)	1 00% ± 0%		
TS (g/L)	176.2 ± 36.9		
VS/TS (%)	98% ± 2%		

Substrate characterization: pre-treatment effect

	Shredding	Thermal	Thermo-alkali	Thermo-acid
Parameter	Mean ± St. dev.			
Conductivity (µS/cm)	1321 ± 9	1662 ± 5	2805 ± 21	3795 ± 50
COD (g/L)	26.9 ± 0.9	26.8 ± 0.9	26.5 ± 0.0	26.7 ± 2.1
sCOD/COD (%)	56.2 ± 1.9	57.6 ± 5.2	58.5 ± 1.6	63.6 ± 0.7
TSS (g/L)	10.4 ± 0.6	9.2 ±1.1	8.5 ± 0.3	7.5 ± 1.6
SSV/SST (%)	100 ± 0	97 ± 4	100 ± 0	100 ± 0
ST (g/L)	14.5 ± 0.9	15.1 ± 0.7	15.1 ± 0.3	15.2 ±0.0
SV/ST (%)	96 ± 1	97 ± 2	92 ± 1	89 ± 2
VSS/VS (%)	74.5 ± 0.8	62.5 ± 8.7	61.2 ± 1.4	55.6 ± 12.7

Results: soluble COD

8

IRSA CNR

Results: COD

IRSA

CNR

Results: VSS

10

Corfù 2022 - 9th International Conference on Sustainable Solid Waste Management, 15-18 June 2022 – Virtual session IV- Anaerobic Treatment & Anaerobic Digestion

Results: VS

IRSA

CNR

11

Results: biogas

Results: biogas

IRSA

Biogas increase (19 d)

Pre-treatment/Shredding				
Shredding + 121°C	137.7%			
Shredding + 121°C + NaOH	130.9%			
Shredding + 121°C + HCI	138.0%			

Biogas yield (mL/gCOD_{rem})

	Mean	St. dev.
Shredding	430	61
Shredding + 121°C	533	16
Shredding + 121°C + NaOH	566	20
Shredding + 121°C + HCI	523	53

Results: biogas

Biogas yield: 7 vs 19 days

Conclusions...

- No inhibition phenomena due to thermal or thermo-chemical pre-treatments;
- Almost no differences among investigated pre-treatments in terms of organic matter solubilization and removal, as well as, biogas yield;
- Pre-treatments resulted in a moderate increase of the biogas yield (~ 30%);
- Thermal pre-treatments speeded-up anaerobic digestion process (~ 3 times).

Work in progress...

Done

Plant operating condition: 3 kgCOD/m³*d

Feed: OFMSW after shredding

CH₄ yield: 274 NmLCH4/gCOD_{rem}

COD rem: 88 ± 6%

VS rem: 94 ± 3%

Ongoing

Plant operating condition: 3 kgCOD/m³*d

Feed: OFMSW after shredding and

thermal pre-treatment

THANK YOU FOR THE ATTENTION

ANY QUESTION? Email: marco.desanctis@ba.irsa.cnr.it