Valorization of farm pond biomass as fertilizer for economically recycling phosphorus

Sanjay Shukla, Alan Hodges, Asmita Shukla Ag. and Biological Engineering Department Food and Resource Economics Department University of Florida, USA

Agricultural Ponds

- 6% of global farmland (78,000 km²)
- End of the farm
- Ponds/Reservoirs/Stormwater Detention
- 10-15% farm area
- Water supply (irrigation) and qualityUSA
 - Flood protection, nutrient treatment
 - Best Management Practice (BMPs)
 - Gravity, pumped
 - Wetland, wildlife habitat

Phosphorus Losses, Capture, and Treatment

- Long-term P (and N) input and losses
- N, P cause of eutrophication of waterbodies
- Aging Ponds Legacy P Soil P saturation
 - P (and N) released
 - After large storms
 - Annual plant dieback
 - Annual application of P fertilizer
- Shrinking global P reserves

IMPOUNDMENTS AS A WATER QUALITY BMP

Strategic Location

Unavoidable nutrient losses

Release from impoundments

In-farm BMPs

Opportunity to capture and recycle nutrients

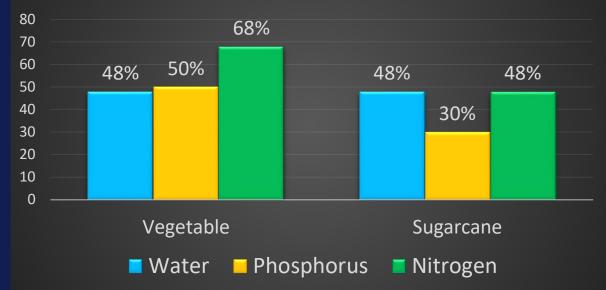
Downstream

Water & Phosphorus Retention: Current

Soil Phosphorus Saturation and Release

Event-based P Retention

41 Ν -10 Ε -24 65 G -6 A 36 -19 Ε 40 80 -20 20 60 -40 0 **PHOSPHORUS TREATMENT (%)**


Shukla et al., 2017

Fresh Vegetable Farm = 112 ha, Pond = 15 ha

Sugarcane 5 ha Farm = 122 ha, Pond = 14 ha

% Water and Nutrient Treatment

Nutrient Capture, Re-use, Long-term Sink

Reducing soil P levels

Limiting vegetation dieback

Biomass Harvesting-Composting: Closing the loop

- Harvest vegetation at end of growing period (winter)
 Reduces soil P density in the pond
 - •Eliminates plant-bound P release to water column

Pond Biomass

Harvesting

Credit:Loglogic

Composting

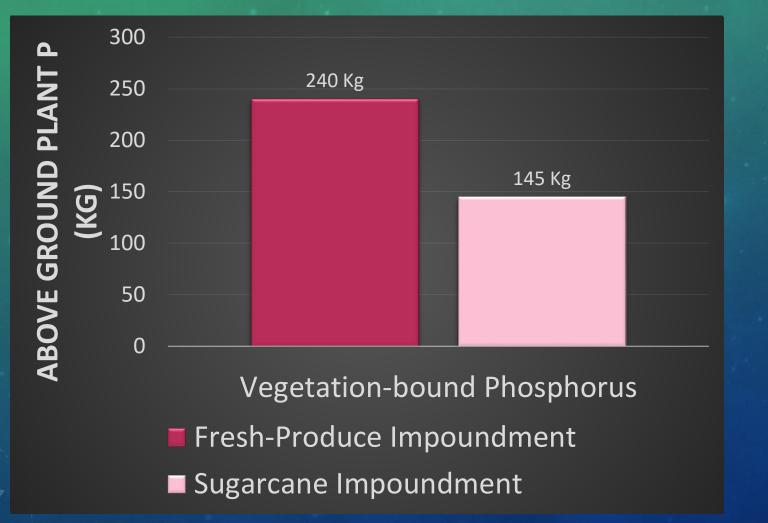
• Harvested biomass as feedstock

- Reduces
 - Irrigation and fertilizer inputs
 - Leaching, drainage (27%), nutrient loads
 - Improves soils health, ecological diversity
 - Reduction in carbon and energy footprints

*Shukla and Pandey, 2006

Harvesting

Composting

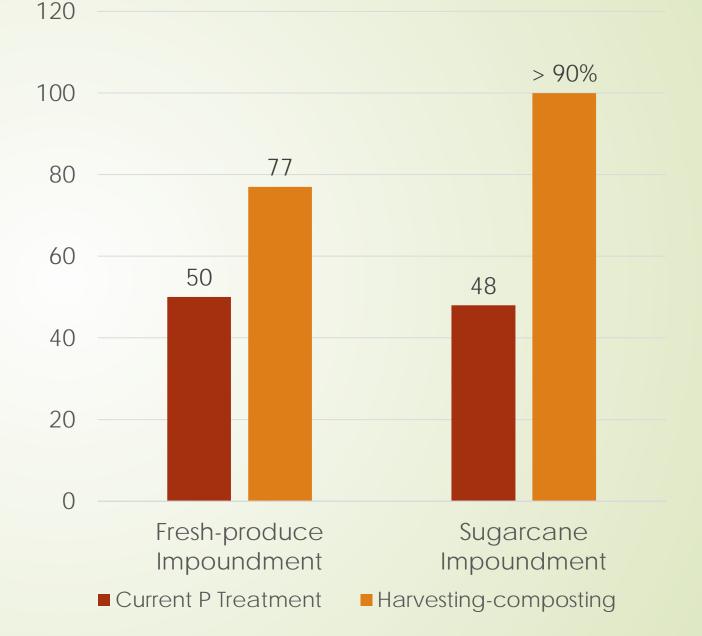

On-farm

compost

use

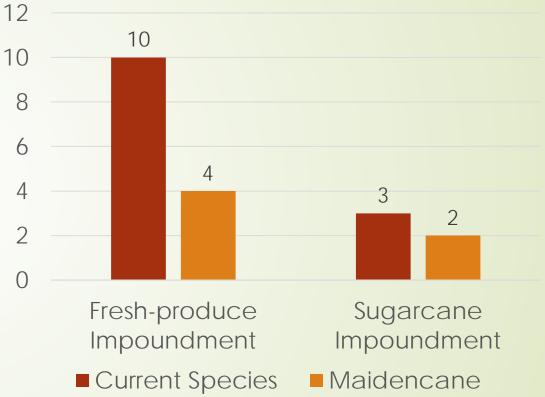
Biomass Phosphorus

- Vegetation An important P pool inside the impoundment
- Plant uptake negligible, senescence, decay, and return to soil and water



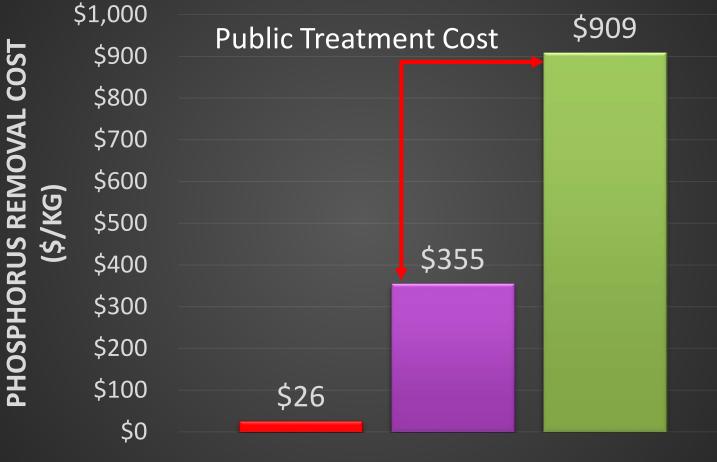
Harvesting-Composting: Current and Phosphorus Recycling

	Vegetable	Sugarcane
Harvestable P	180 kg	109 kg
Soil P at risk of release	1035 kg	96 kg


75% of area is harvested

Harvesting-Composting: Vegetation Type

- Invasive plants (e.g., Para grass, cattails, etc.)
- Establish native species (e.g., Maiden cane)
- Harvest current or native species
- Assumptions
 - 2 years to establish Maiden cane
 50% stand is harvested every year


Years to mine excessive P

Phosphorus & Nitrogen Removal Costs: Current and Recycling (Vegetable)

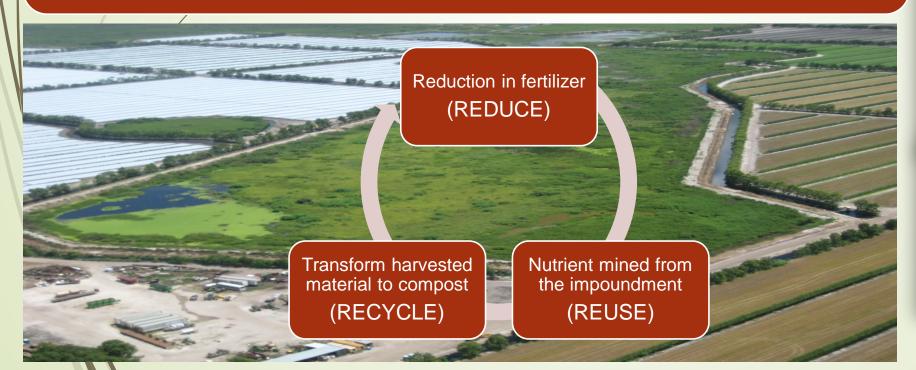
STA-Max

Phosphorus

Nitrogen (\$/kg)RecyclingTreatment Wetland\$9\$103

Harvesting-composting sustainable and cost-effective Need Field-verification STA – Stormwater Treatment Area (constructed wetlands)

Harvesting-composting
STA-Min


Annual Payments to Farmers for Water Quality Services

	Phosph ■ Minimum			Nitrogen Treatment • \$42,000/yr.
\$60,000	\$53,000			• \$42,000/yr.
\$50,000				Policy for Long-term P Sink
\$40,000			¢21.000	 Farmers implement harvesting-composting State compensates farmers
\$30,000			\$31,000	 Payment for Environmental Services Cost-share
\$20,000	\$17,000			
\$10,000		\$9,000		
\$0				
	Vegetable	Sugar	cane	

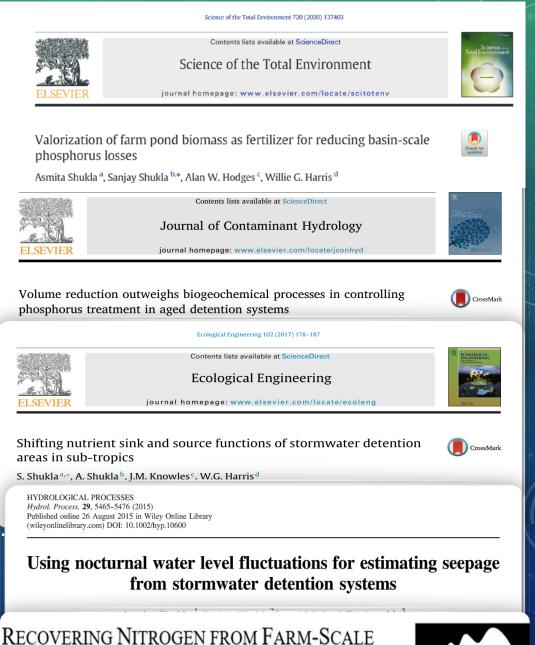
Circular Nutrient Economy: A Win-win

Reducing soil nutrient saturation through harvesting-composting

Adoption: Payment for Water, Nutrient, Ecological Diversity, Carbon Services

Harvesting-Composting: Basin Scale P Reduction Potential

Harvestable 854 metric tons


2018 Phosphorus Loads to EPA 151 metric tons

MORE INFORMTAION

- Shukla^g, A., S. Shukla, W. Harris, and A. W. Hodges. 2020. Valorization of farm pond biomass as fertilizer for reducing basin-scale phosphorus losses. *Science of The Total Environment*. 720:1-9
- Shukla, A., S. Shukla, and M. D. Annable. 2015. Using nocturnal water level fluctuations for estimating seepage from stormwater detention systems. *Hydrological Processes* 26(26): 5465-5476. DOI: <u>10.1002/hyp.10600</u>
- Shukla, S., A. Shukla, J. M. Knowles, and W. G. Harris. 2017. Shifting nutrient sink and source functions of stormwater detention areas in sub-tropics. *Ecological Engineering 102:* 178-187.DOI: <u>10.1016/J.ECOLENG.2017.01.034</u>
- Shukla, A., S. Shukla, M. D. Annable, and A.W. Hodges. 2017. Volume retention outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems. *Journal of Contaminant Hydrology*. DOI: <u>http://dx.doi.org/10.1016/j.jconhyd.2017.05.005</u>.
- Shukla, A., S. Shukla, and A.W. Hodges. 2017. Recovering nitrogen from farm-scale drainage: Mechanism and Economics. *Transaction of ASABE*. DOI: <u>https://doi.org/10.13031/trans.12277</u>

A. Shukla, S. Shukla, A. W. Hodges

DRAINAGE: MECHANISM AND ECONOMICS

Acknowledgement

