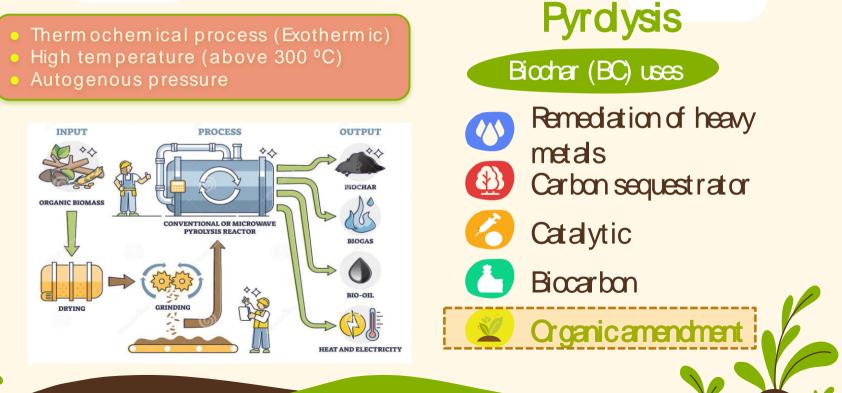
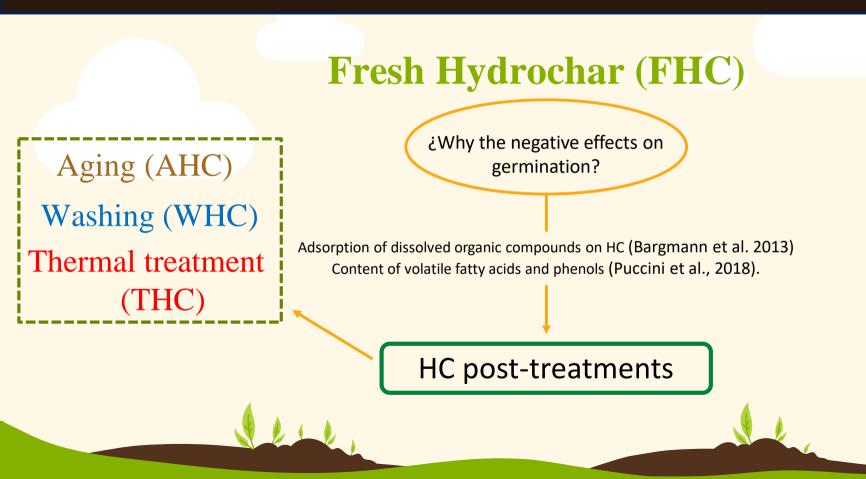
Evaluation of green waste biochar and hydrochar application as soil amendment

<u>E. Suarez,</u> M. Tobajas, A.F. Mohedano, M. Reguera, E. Esteban, M.A. de la Rubia Universidad Autónoma de Madrid


eneko.suarez@uam.es

Comunidad de Madrid

Universidad Autónoma de Madrid UNIÓN EUROPEA Fondos Estructurales Invertimos en su futuro


BC and HC am endments:

- Increase soil porosity
- Decrease bulk density
- Promote the formation and stability of soil aggregates

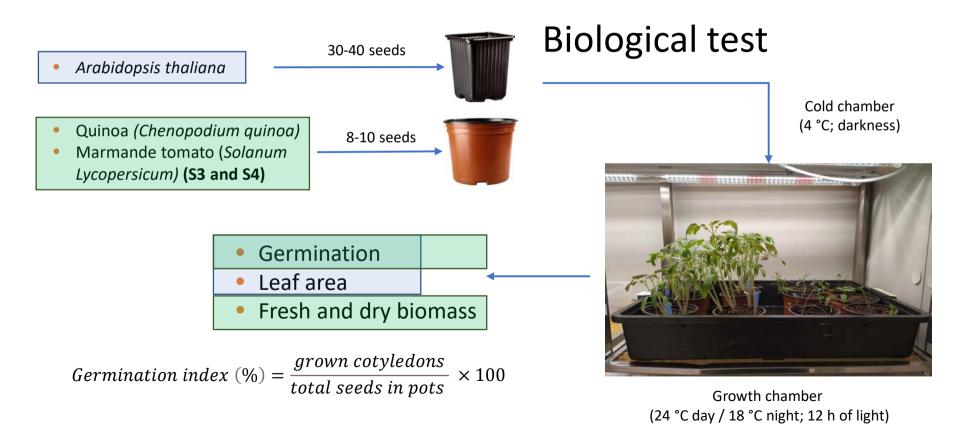
Soil with high carbon content

OBJECTIVES

Evaluate the potential application of FHC, post-treated HCs and BC obtained from GPW thermal treatments as growth substrate or soil amendment.

Two experiments have been designed:

- Evaluate the effect of FHC (2 15 %) on the plant-substrate seed by test germination index (GI) and plant growth of *Arabidopsis thaliana*, *quinoa and tomato*.
- Analyze the effect of adding (1 5 %) of fresh and post treated HC, or BC to a marginal agricultural soil to establish their effect on tomato seed germination to determine their potential phytotoxic effects.


MATERALSANDMETHODS

Composition (% d.w.)

Substrate name	Peat	Vermiculite	River sand	Concentration of HC (% d.w.)	Sterilize conditions (T; t)
S1	100	-	-	Control, 2.5, 5, 10 and	
S2	80	-	20	15	115 ºC; 15 min
S 3	75	25	-	Control, 1, 2, 2.5, 5, 10	
S4	60	20	20	and 15	120 ºC; 40 min

Marginal agricultural soil characteristics

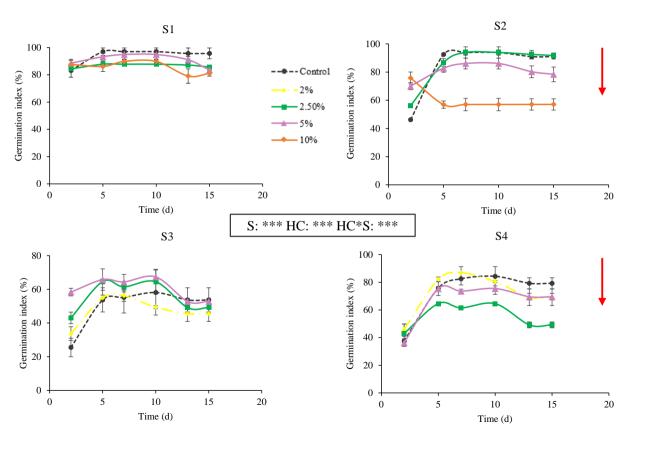
	Raw GPW	HC180
Moisture (%)	5.0	75.3
Total solids (%)	95.0	24.7
VM (% d.w.)	76.5	67.1
Ash (% d.w.)	5.1	3.3
рН	-	5.2
EC (mS/m)	-	61.2
FC (% d.w.)	18.4	29.6
C (% d w)	16 9	/Q Q
H (% d.w.)	6.1	5.3
N (% d.w.)	0.9	1.3
S (% d.w.)	0.4	0.2
O (% d.w.)*	40.6	40.1
COD(g/g)	1.1	0.5
C/N	54.9	38.6
H/C	1.6	1.3
O/C	0.7	0.6
N/P/K	0.9/0.9/4.9	1.3/1.2/3.4

Characterization of feedstock

	Raw GPW	HC180
 Ca (mg/kg) 	5130.0	32700.0
Si (mg/kg)	7327.0	8630.0
K(mg/kg)	4860.0	3500.0
→ P (mg/kg)	930.0	1162.0
Fe (mg/kg)	-	694.9
Mg (mg/kg)	774.0	650.0
Al (mg/kg)	123.0	367.0
Na (mg/kg)	31.0	53.0
As (mg/kg)	-	0.7
Cd (mg/kg)	-	0.5
Co (mg/kg)	-	0.4
Cr (mg/kg)	-	70.0
Cu (mg/kg)	-	13.2
📩 Zn (mg/kg)	20.0	29.0
Cr ≤ 70 mg, Zn ≤ 200 mg		

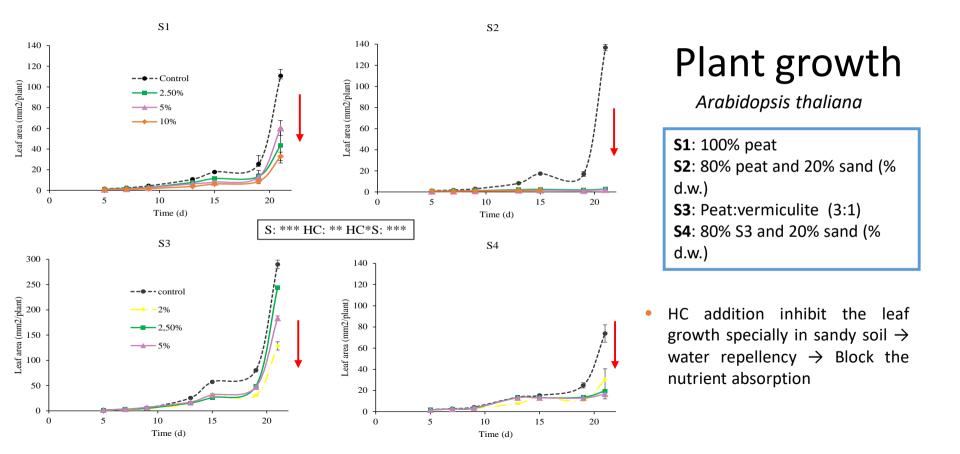
Biochar

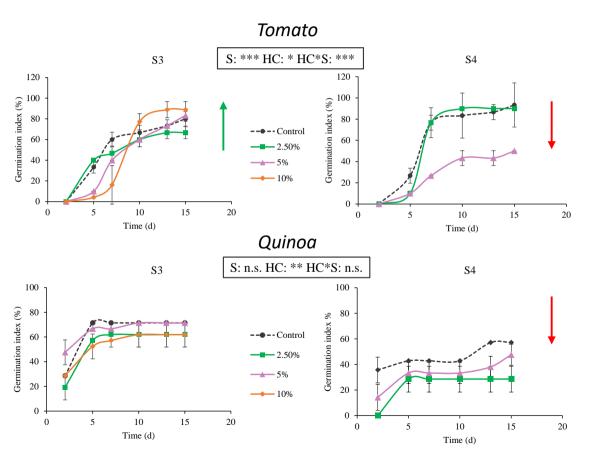
Germination test process



Growth chamber (26 °C day / 20 °C night; 13 h of light)

RESULTS AND DISCUSSION

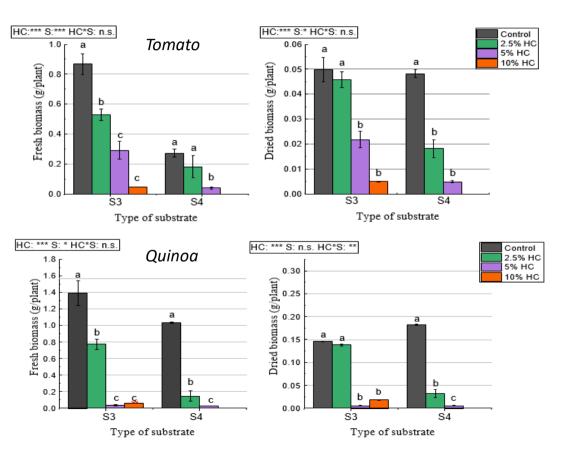



FHC effects on germination

S1: 100% peat
S2: 80% peat and 20% sand (% d.w.)
S3: Peat:vermiculite (3:1)
S4: 80% S3 and 20% sand (% d.w.)

Arabidopsis thaliana

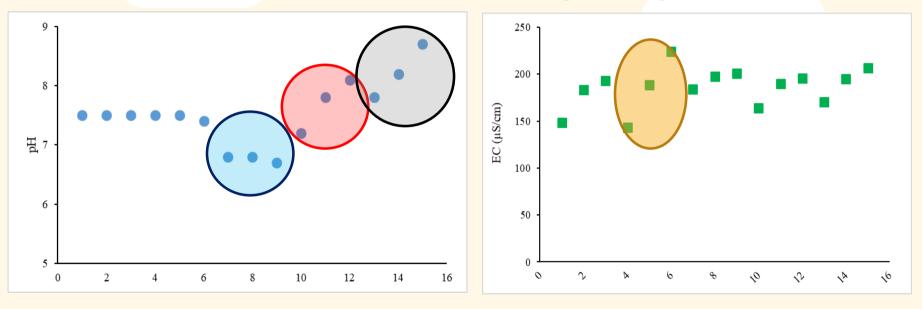
- Best germination in substrates without vermiculite (*p*<0.001)
- \uparrow HC concentration \downarrow GI

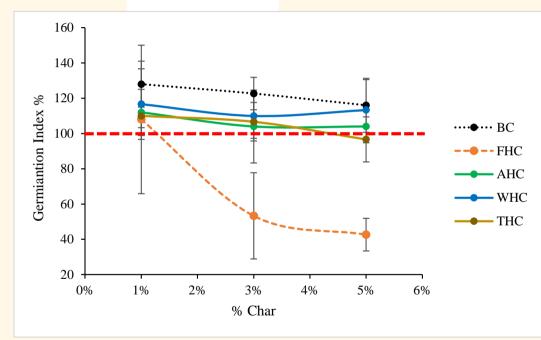


FHC effects on germination

S3: Peat:vermiculite (3:1)S4: 80% S3 and 20% sand (% d.w.)

- FHC increased GI on tomato and had no effect on quinoa using S3.
- Sandy soil (S4) and FHC application reported negative effect on quinoa and tomato GI.




Plant growth

S3: Peat:vermiculite (3:1)S4: 80% S3 and 20% sand (% d.w.)

- FHC negative effect (*p*<0.001) on growth specially in quinoa on S4.
- Sandy soil → Increase drainage
 → lower water retention →
 lower fresh weight

Effect of char application on marginal agricultural soil

Germination test

- FHC caused a significant reduction in GI for doses higher than 1%.
- WHC and BC mixtures improved the GI.
- THC also improved GI it at low dosage (1%).
- AHC did not showed negative effects upon GI at any dosage.

- HTT results in an effective method for valorizing lignocellulosic residues to produce an HC that presents good chemical characteristics to be used as soil conditioner.
- FHC application on peat-based substrates, especially those containing sand, caused inhibition of both, germination and plant growth.
- Post treatments of FHC alleviated the germiantion inhibition of tomato seeds on marginal agricultural soil.
- Considering the celerity and techno-economical requirements of the procedure, WHC resulted in the best post treatment.

Acknowledgments

The authors greatly appreciate funding from MICINN (PID2019-108445RB-I00), MINECO (PDC2021-120755-I00) and financial support from Madrid Regional Government (Project P2018/EMT-4344). E. Suarez received additional funding from Madrid Regional Government (PEJD-2019-PRE/AMB-14231).

Madric

UNIÓN EUROPEA Fondo Social Europeo ELESE invierte en tu futuro

Energy and Nutrient Recovery by Hydrothermal Treatments

Guest Editors

Prof. Dr. Angel F. Mohedano Prof. Dr. Elena Diaz Prof. Dr. M. Angeles de la Rubia

> **Deadline** 31 December 2022

THANK YOU FOR YOUR ATTENTION

