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Introduction

Wheat production 
2021: 
778.6 Millions metric 
tons

Wheat straw 
Approx. 1.13 ton/ton grain

Hemicellulose
Hydrolysate

Liquid Hot Water Recalcitrance!
Pretreatment
Detoxification

Trichoderma 
reesei

Proof of concept



Methodology
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1. Detoxification stages

Finding conditions 
Simulation software Aspen Plus V10

Evaporation synthetic hydrolysate 
(SH) / wheat straw hydrolysate 

(WSH)

Removal of acetic acid with pH 
modification (SH and WSH) + evaporation

Evaporation of WSH with pH modification  

2. Determination of toxicity 
thresholds for T. reesei

Culture medium:
Macro and micronutrients
Glucose as carbon source 
(70 g/L)

+
Acetic acid
Furfural 
HMF
(individual analysis)

% reduction in produced 
biomass compared to the 

control

3. T. reesei cultivation in detoxified 
media

Carbon sources (approx. 30 
g/L):
Glucose (control)
Pre-treated SH and WSH 

Biomass yield (g/g total 
sugars at the beginning)
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Results detoxification. Stage 1: preliminary detoxifications using synthetic hydrolysate (SH) 

Compounds
Concentration [g/L]

Synthetic Hydrolysate Concentrate Condensate

Glucose 0.24 7.40±0.39 N.D

Xylose 0.85 26.64±1.43 N.D

Acetic acid (AcH) 1.1 2.71±0.12 0.58 ±0.048

Furfural 0.15 N.D 0.27 ± 0.022

HMF 0.006 0.030±0.002 N.D

Table 1. Detoxification of synthetic hydrolysate without pH modification

55°C 140 mbar
Initial volume evaporated: 66.7%

5

Fig 2. Monomeric and oligomeric sugars in wheat straw hydrolysate
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Concentration factors:
Sugars 3.1 times
AcH 2.5 times
HMF 5 times

Condensate:
100 % furfural
30% AcH
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55°C 140 mbar
Initial volume evaporated: 70.6%

Table 2. Detoxification of wheat straw hydrolysate without pH modification

Compounds
Concentration [g/L]

Wheat straw Hydrolysate Concentrate Condensate

Total glucose 1.74 6.22 ± 0.47 N.D
Total galactose 0.62 2.78 ± 0.13 N.D
Total mannose 0.27 1.95 ± 0.14 N.D
Total fructose 0.20 1.25 ±0.039 N.D
Total xylose 8.97 31.80 ± 2.33 N.D
Total arabinose 0.97 3.99 ± 0.29 N.D
Acetic acid 1.40 3.50 ± 0.10 0.46 ± 0.11
Furfural 0.41 N.D 0.44 ± 0.09
HMF 0.021 0.086 ± 0.004.5 N.D

Condensate:
100 % furfural
25% AcH

• Similar trend than synthetic hydrolysate
• Fructose is degraded 
• Limited removal of acetic acid
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Results detoxification. Stage 1: preliminary detoxifications using wheat straw hydrolysate 
(WSH)

Concentration factors:
Sugars 3.5 times

47.9 g/L total 
AcH 2.5 times
HMF 4 times
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pH

%AcH %Ac-

Feed

Feature Units SH + H2SO4 SH + NaOH (1) SH + NaOH (2)

pH - 2.00 4.66 5.46
Total AcH [mg/L] 1.46 1.46 1.46
AcH [mg/L] 1.44 0.81 0.24
Ac- [mg/L] 0.02 0.65 1.22
% AcH % 100 56 17

Concentrate
Total volume evaporated % 71.2 63.7 73.0
Final pH - 1.60 4.93 5.74
Concentration total AcH [mg/L] 2.79 3.54 5.06
AcH [mg/L] 2.78 1.43 0.48
Ac- [mg/L] 0.01 2.11 4.58
Acetic acid removed % 44.8 22.2 6.5
Concentration factor AcH times 1.9 2.4 3.5
Concentration factor HMF times 3.7 3.4 4.0

Table 3. Detoxification of synthetic hydrolysate with alkaline and 
acid addition 
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Fig 3. Acetic acid (AcH) and acetate (Ac-) equilibrium in a synthetic hydrolysate. 

Results detoxification. Stage 2: removal of acetic acid from SH with pH modification 
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Compounds
Concentration [mg/L] Mass distribution after 

treatment [%]
Wheat straw 
Hydrolysate Concentrate Condensate Concentrate Condensate

Total glucose 1.89 20.01 ± 7.1 N.D 100 0
Total galactose 0.91 9.83 ± 3.6 0.017± 0.010 98.2 1.8
Total mannose 0.53 5.58 ± 1.88 N.D 100* 0
Total fructose 0.11 0.68 ± 0.08 N.D 66.2 0
Total xylose 11.72 117.1 ± 3.64 N.D 100 0
Total arabinose 1.36 14.44 ± 4.80 N.D 100 0
Acetic acid 1.74 7.45 ± 1.79 1.20 ± 0.014 44.1 55.9
Furfural 0.41 0.012 ± 0.006 0.38 ± 0.08 0.3 99.7
HMF 0.03 0.34 ± 0.14 N.D 100 0

Concentration factors:
Sugars 10 times

167 g/L
AcH 4.2 times
HMF 13 times

Condensate:
99.7 % furfural
55.9 % AcH

55°C 140 mbar
Initial volume evaporated: 87.7 %
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Table 4. Detoxification of acidified wheat straw hydrolysate

Results detoxification. Stage 3: detoxification of WSH with pH modification  
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• Furfural is the most harmful degradation product
• Acetic acid in low concentrations can be metabolized 
• Detoxified wheat straw hydrolysate contain safe concentrations of furans.

Results. Determination of toxicity thresholds for T. reesei

Fig 4. Toxicity thresholds of a) furfural, b) acetic acid, and c) HMF. 
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Culture media Evap Vol.
%

Initial 
sugars
[g/L]

Sugars 
consumption

%

Acetic acid [g/L] HMF [g/L] Biomass

T0 Tf T0 Tf
Tf
[g]

Yield
[g/g]*

Control glucose 0 28 98.1% 0 0 0 0 0.297 0.430

SH 

approx. 
63-73

32 0.0% 2.4 2.0 0.026 0.01 0.014 0.017

SH + NaOH (2) 26 4.4% 2.6 0.1 0.041 0 0.032 0.050

SH + H2SO4
23 34.0% 2.4 1.7 0.045 0 0.045 0.078

32 2.1% 2.2 1.5 0.043 0 0.028 0.035WSH 

WSH + H2SO4 approx. 88 22 60.3% 0.9 0 0.036 0 0.230 0.420
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Table 5. Biomass cultivation in different culture media

Results. T. reesei cultivation in detoxified media
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Table 5. Biomass cultivation in different culture media

AcH effect (AcH and 
Ac-) over biomass 
production

Results. Determination of toxicity thresholds for T. reesei

9th International Conference on Sustainable Solid Waste 
Management



Conclusions 

•Wheat straw hydrolysate was detoxified, removing 99.7% furfural and 55.9% of acetic acid without sugar 
losses.

•Furfural in concentrations above 250 mg/L can cause severe inhibition in the cultivation of T. reesei.

•Acetic acid is produced in wheat straw hydrolysate at levels capable of impairing the production of T. 
reesei biomass.

•The acidification of wheat straw hydrolysis improved the removal of acetic acid and increased the 
production of biomass, reaching up to 98% of the yields in control.
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Outlook…
Detoxified wheat straw hydrolysate can be used as a substrate for cultivating T. reesei. Further research is 
required towards the identification of possible products like enzymes.
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Thank you for you attention!
Questions, comments?
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