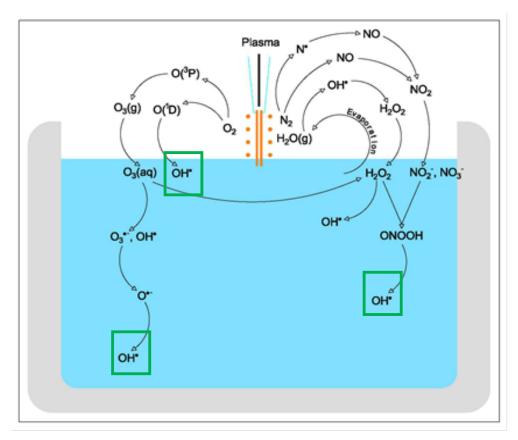

Advanced oxidation processes in treatment of agricultural biomass residues

Djukić-Vuković¹, J. Grbić², D. Mladenović², S. Lazović³, L. Mojović¹

¹Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, 11120, Serbia

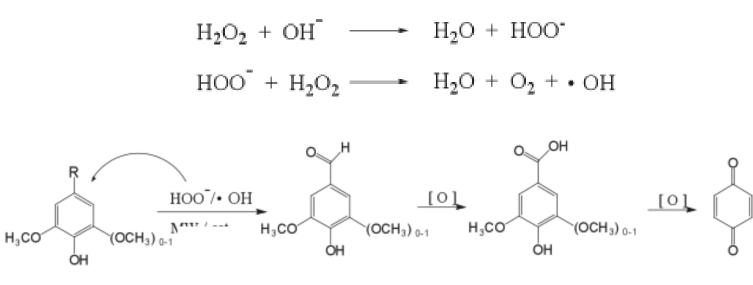
² Innovation centre of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, 11120, Serbia

³Institute of physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade, 11000, Serbia



Fenton reaction

 $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \cdot OH + OH^ Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HOO + H^+$ $2 \text{ H}_2\text{O}_2 \rightarrow \text{OH} + \text{HOO} + \text{H}_2\text{O}$ $H_2O_2 + \cdot OH \rightarrow HOO \cdot + H_2O$ HOO· $\leftrightarrow \cdot O_2^- + H^+$ $Fe^{3+} + HOO \rightarrow Fe^{2+} + O_2 + H^+$ Fe^{3+} + $\cdot O_2^- \rightarrow Fe^{2+} + O_2$ $Fe^{2+} + \cdot OH + H^{+} \rightarrow Fe^{3+} + H_2O$ $\cdot O_2^- + H_2O_2 \rightarrow OH + OH^- + O_2$


Non- thermal plasma or cold plasma

Mitrović et al. (2020). Waste and Biomass Valorization, 1-14.

Alkaline peroxide oxidation

$$2 \cdot OH \longrightarrow H_2O_2$$

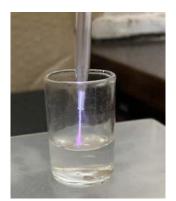
 $H_2O_2 + \cdot OH \longrightarrow H_2O + O_2$

Gu te al. (2012). Ciencia y tecnologia, 14(1), 31-41.

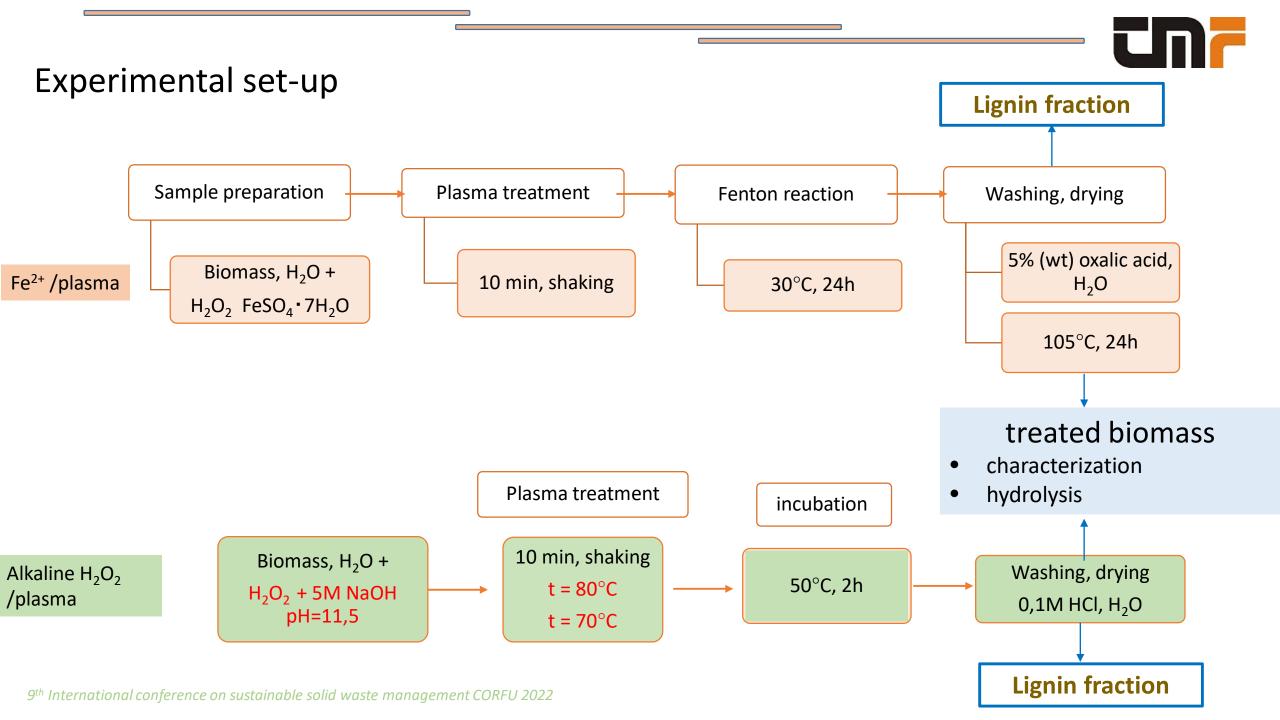
Can non-thermal plasma treatment contribute to the better utilization of the biomass?

Experimental

- Biomass agricultural residues grounded corn stalks
- Crude fiber analysis
- Plasma source: non-thermal plasma needle
 - Treatment time 10 minutes
 - feed gas was Ar, the gas flow = 0,5 slm,
 - distance between plasma needle and substrate was 2 cm


→Spectrophotometric assay / ABSL – acetyl bromide soluble lignin (*Fukushima i Hatfield*, *Journal of Agricultural and* Food Chemistry, 49(7), 3133–3139, 2001)

%
$$ABSL = (0,11452 \cdot A + 0,0008) \cdot 10 \cdot \frac{R}{m} \cdot 100(\%)$$


→Bioassesibility - (Nikolić et al., Chemical Industry and Chemical Engineering Quarterly, 17(3), 367–374, 2011)

$$% C_{r_I} = 100 - \left(\frac{ISV}{412} \cdot 100\right) \qquad ISV = \frac{(V_b - V_s) \cdot 2,04 \cdot 2,54}{m}$$

• ATR-FTIR spectrometry

• Sample preparation

Fenton					
Sample	Biomass, mg	H ₂ O, ml	H ₂ O ₂ (30 wt%), ml	FeSO ₄ •7H ₂ O, mg	
С	50	10.000	-	-	
H-1	50	9.975	0.025	-	
H-2	50	9.950	0.050	-	
H-3	50	9.900	0.100	-	
F-1	50	9.975	0.025	1.85	
F-2	50	9.950	0.050	4.35	
F-3	50	9.900	0.100	9.23	

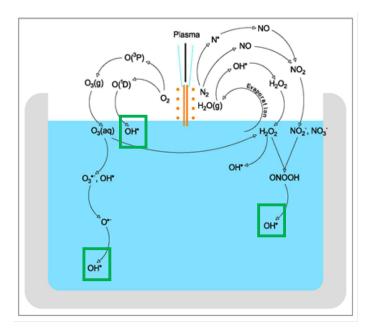
	Alkaline H_2O_2 , pH=11,5				
70°C	50	10.000			
70°C + P	50	10.000			
80°C	50	10.000			
80°C + P	50	10.000			

treated biomass

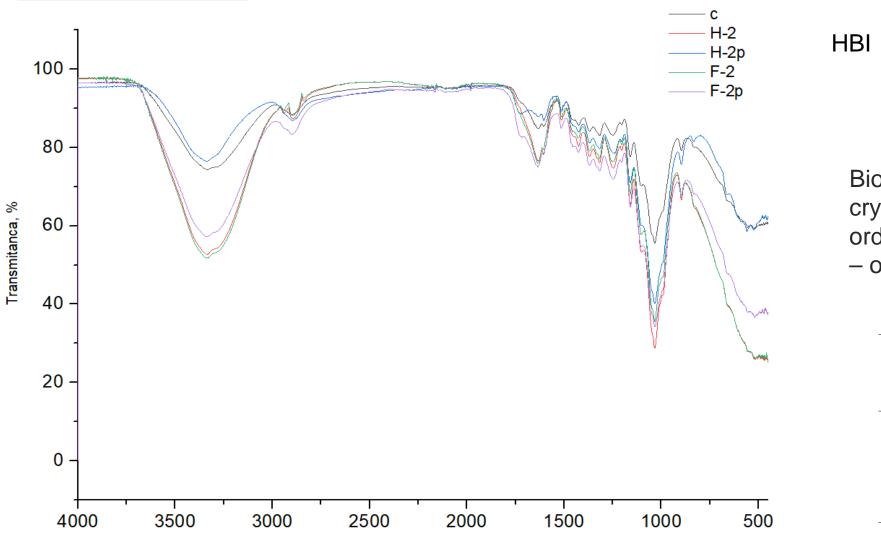
Alkaline H₂O₂/plasma Fenton/plasma

Experimental

To evaluate potential of remaining carbohydrate fraction for hydrolysis/fermentation


• Enzyme hydrolysis

- Citrite buffer pH=4.8, 2.5 μl Cellic Ctec[®], 50 mg biomass/ml, incubation 48h, 50°C, 170 rpm
- HPLC for analysis of carbohydrate composition in hydrolysate


Chemical composition				
ABDL, %	28,37±5,29			
Celuloza, %	36,02±2,98			
Hemiceluloza, %	26,95±0,79			

Effects of plasma treatment *per se* :

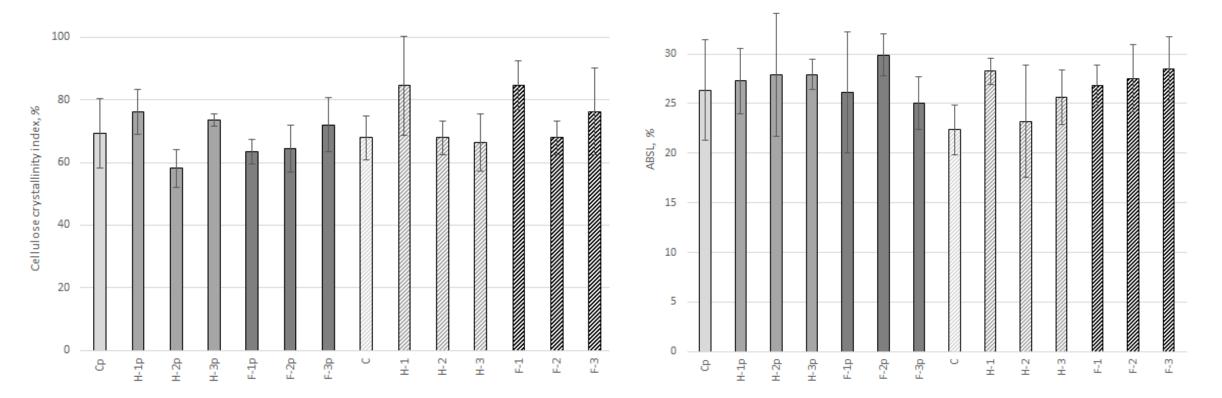
- Generation of H₂O₂
 - 10 min treatment , 10 ml of H₂O, 50 mg of biomass → c(H₂O₂)=0,008-0,01 mg/ml
- Acidification of media
 - 10 min treatment of 10 ml of media with 50 mg of biomass → pH ~4,0
 - 10 min treatment of 10 ml of H₂O pH~ 3,0 this way obtained water is called "plasma –activated water"

Fe²⁺ /plasma

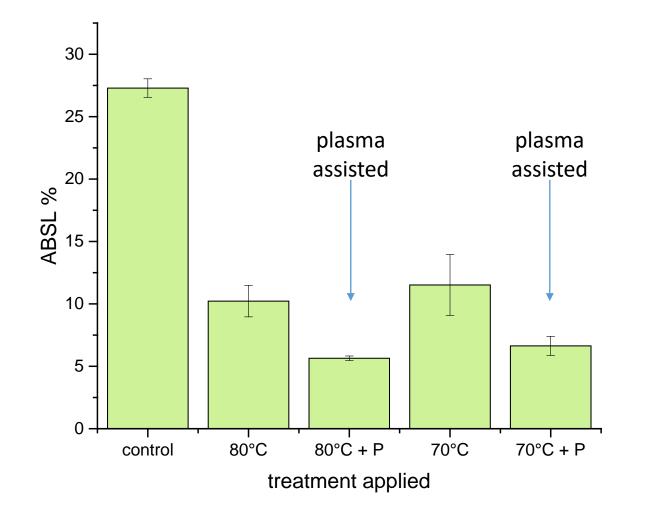
Talasna dužina, cm⁻¹

HBI – hydrogen bond intensity

Biomass higher with а crystallinity and а more ordered structure of cellulose – often through H-bonding

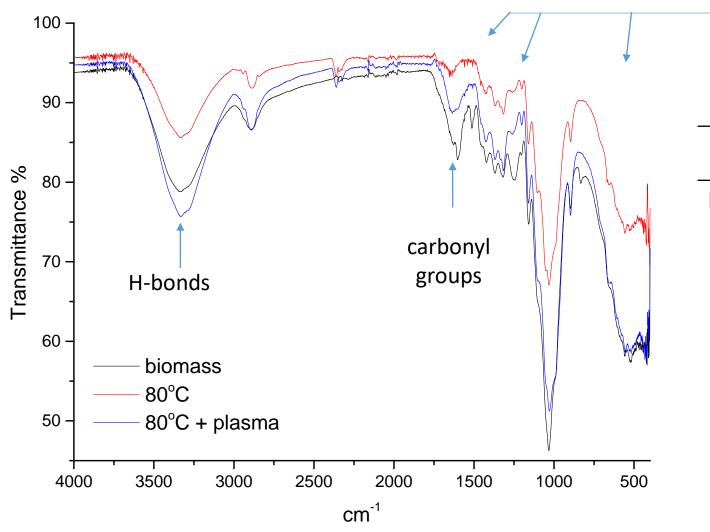

			V		Sample	HBI (Hydrogen Bond Intensity, 4000-2995/A993)
					С	0,65
					H-2	0,55
2500	2000	1500	1000	500	F-2p	0,59

Bioassibility assay – iodine solution

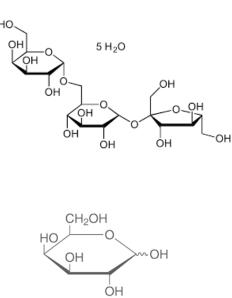

Acetyl bromide soluble lignin

Under applied conditions, very limited degradation of lignin was obtained

Alkaline H₂O₂ /plasma



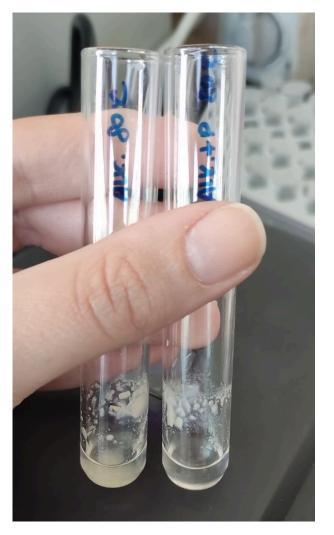
Alkaline H₂O₂ /plasma


Changes in the part od structure related to lignin

	biomass	70°C	70°C + P	80°C	80°C + P
TCI	0,74	0,61	0,63	0,60	0,62
HBI	0,47	0,48	0,50	0,51	0,55

HBI – hydrogen bond intensity TCI – total crystallinity index

Enzymatic hydrolysis


Alkaline H ₂ O ₂	Glucose concentration (mg/ml)
70°C	23,8
70°C + plasma treatment	22,3 🗸
80°C	25,2
80°C + plasma treatment	24,6 🗸

Plasma assisted treatment does not result in higher glucose concentration.

Although, lignin concentration is lower in plasma treated samples.

 Higher cristallinity of carbohydrate fraction and lower assesibility to enzymes?
Part of carbohydrate fraction hydrolysed during the plasma treated and removed with lignin fraction?

Conclusions

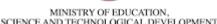
- Different treatments conditions were applied
- Plasma assisted alkaline H₂O₂ improved delignification of biomass.
- Obtained carbohydrate fraction was succesfully hydrolysed by commercial cellulase with glucose as the main constituent and galactose and raffinose also present in the hydrolysate.

For further improvement: lower T, different treatment conditions, XRD, SEM, analysis of lignin fraction

Advanced oxidation processes

Acknolwedgment

This work and participation at the CORFU 2022 was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-68/2022-14/200135)


Thank you for your attention!

Contact: adjukic@tmf.bg.ac.rs

9th International conference on sustainable solid waste management CORFU 2022

11-3

