

Valorization of forest and agricultural biomass residues towards the production of docosahexaenoic acid (DHA) by the heterotrophic dinoflagellate *Crypthecodinium cohnii*

Savvas Staikos¹, <u>Anthi Karnaouri¹</u>, Stylianos D. Stefanidis², Konstantinos G. Kalogiannis², Angelos A. Lappas², Evangelos Topakas¹

¹Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Greece

² Environmental Fuels and Hydrocarbons, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece

> 9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 June 2022

Omega-3 fatty acids as important nutraceuticals

Functional products and Nutraceuticals:

- *Nutraceuticals* are standardized grade of food sources → contain *bioactive compounds*
- Extra benefits in addition to basic nutritional value found in food (prevention or treatment of various diseases).
- Addition of small amounts in foods (1-5%) adds *higher value to the final products*.
- the demand for functional foods and beverages, especially for *omega-3 fatty acid fortified products*, has increased significantly in the past few years

DEVELOPMENT HEALTH LEVELS

E BLOOD PRESSUR

Conventional sources of Ω -3 fatty acids in marine environments

Fishes and other marine organisms are abundant sources of Ω -3 fatty acids...

Production of Ω -3 fatty acids from marine microalgae

- Microalgae oil as an attractive alternative to fish oil!
- Production of Ω-3 polyunsaturated fatty acids (PUFAs), especially those with with long chain (LC-PUFAs)
- Microalgae oil is rich in EPA (20:5n-3) and DHA (22:6n-3) → recognized as bioactive compounds of pivotal importance

3 benefits of omega-3 oil from microalgae!

The Dark Side of Microalgae Biotechnology!

Heterotrophic Platforms Directed to ω -3 Rich Lipid Production

- > Non-seasonality, non-dependence on climatic conditions, non-need of arable land
- Utilization of low-cost substrates (organic wastes/residues) to produce PUFAs
- > Marine heterotrophic microalgae that belong to *Dinoflagellata*

Feedstock	Microorganism	EPA/DHA Production	
Food waste hydrolysate	Schizochytrium mangrovei Chlorella pyrenoidosa	85.5 ± 11.2 mg·g ^{−1} DHA	
Sweet sorghum juice	Schizochytrium limacinum	273 mg·g ^{−1} DHA1.1 mg·g ^{−1} EPA	
Carob pulp syrup	C. cohnii CCMP 316	1.99 g·L ^{−1} DHA45.2 mg·g ^{−1} DHA	
Rapeseed meal hydrolysate + crude waste molasses	C. cohnii ATCC 30772	8.72 mg·L ⁻¹ DHA22–34 % w·w ⁻¹ DHA of TFA	
Cheese whey + Corn steep liquor	Crypthecodinium cohnii CCMP 316	8.5–27% w·w ^{−1} DHA of TFA	

The heterotrophic dinoflagellate Crypthecodenium conhii

- C. cohnii is able to grow utilizing a variety of different carbon sources, such as short chain organic acids (acetic, propionic, butyric acid), ethanol, sugars (glucose, galactose, lactose, xylose)
- The accumulation of lipids reaches up to 45-50% of dry cell weight, with DHA to comprise up to 60% of total fatty acids
- ✓ GRN 41; "DHASCO (docosahexaenoic acid-rich single-cell oil) from *C. cohnii* used in infant formula" (USA, 2001)

Oil fatty acid composition
C14
C16
C18:0
C18:1
C22:0 (DHA)

Valorization of different carbon sources for the production of omega-3 fatty acids

glucose 16 € kg⁻¹

ethanol 1.82 € kg⁻¹

acetic acid 0.45 € kg⁻¹

Are there other available carbon sources in order to reduce the costs of the overall process and develop a sustainable bioeconomy?

low-cost substrates that have been explored...

- ✓ VFAs from anaerobic digestion effluent
- ✓ crude glycerol
- ✓ sugarcane molasses
- ✓ vinegar effluent
- ✓ liquid fraction of exhausted olive pomace
- ✓ date syrup

Lignocellulosic biomass?

- ✓ Valorization of underutilized sugar streams
- \checkmark Integration in biorefineries

OxiOrganosolv: Biomass pretreatment and fractionation

Solid delignified, cellulose-rich fraction

Hemicellulose-rich liquid fraction

Substrate (Drates atmost conditions	%	% cellulose recovery	
Substrate/Pretreatment conditions	delignification	in solid pulp	
Beechwood, H ₂ O/EtOH, O ₂ 12 bar, 175°C, 60min	94.2	99.1	
<i>Beechwood</i> , H ₂ O/ACO, O ₂ 12 bar, 175°C, 120min	97.0	94.2	
Pine, H ₂ O/EtOH, O ₂ 12 bar, 175°C, 60min	87.6	98.5	
Wheat straw, H ₂ O/EtOH, O ₂ 12 bar, 175°C, 120min	86.8	97.6	

Kalogiannis K., Karnaouri A., Michailof C. et al. Bioresource Technology, 2020, 313, 123599

Efficient production of omega-3 fatty acids from *C. cohnii*

Forest pulps-derived hydrolysates as carbon sources for the production of DHA

		Pretreated Biomass	Microalgae biomass (g/L)	Microalgae biomass (wt.% of total sugars consumed)	% TFA (w/w)	TFA (g/L)	% DHA (w/w)	DHA (g/L)
		H ₂ O/THF (50/50%), O ₂ 8 bar, 175°C, 120 min	8.74	35.3	61.76	5.40	26.62	1.44
		H ₂ O/ACO (50/50%), O ₂ 12 bar, 175°C, 120 min	6.48	36.0	45.93	2.97	27.69	0.82
		H ₂ O/EtOH (50/50%), O ₂ 12 bar, 175°C, 120 min	8.57	33.6	54.81	4.70	28.62	1.35
Beechwood	${ m H_2O/THF}$ (50/50%), ${ m O_2}$ 12 bar, 175°C, 120min	7.39	31.9	44.18	3.27	27.23	0.89	
	H ₂ O/ACO (50/50%), O ₂ 25 bar, 175°C, 120min	7.71	31.1	38.22	2.95	21.99	0.65	
	H ₂ O/ACO (50/50%), O ₂ 12 bar, 175°C, 60min	7.76	30.4	33.45	2.60	28.96	0.75	
	H ₂ O/EtOH (50/50%), O ₂ 12 bar, 175°C, 60min	8.72	32.5	39.06	3.41	28.24	0.96	
	H ₂ O/THF (50/50%), O ₂ 12 bar, 175°C, 60min	7.98	32.8	35.71	2.85	29.50	0.84	
	$\rm H_2O/THF$ (50/50%), $\rm O_216~bar,150^{\circ}C,120~min$	7.90	37.3	54.30	4.29	29.40	1.26	
Pine	H ₂ O/EtOH (50/50%), O ₂ 16 bar, 175°C, 60 min	8.60	34.5	47.98	4.13	29.51	1.22	
	H ₂ O/EtOH (50/50%), O ₂ 16 bar, 175°C, 60min	5.47	29.4	38.66	2.12	24.76	0.52	
	Cellulose (Avicel)	5.57	35.5	23.33	1.30	45.68	0.59	
		Untreated beechwood	0.99	49.1	35.96	0.36	14.70	0.05
		Glucose	9.67	30.6	43.03	4.16	34.88	1.45

Karnaouri A., Chalima A., Kalogiannis K. et al. Bioresource Technology, 2020, 303, 122899

Utilization of both C5 and C6 sugars from wheat straw

			TFA (mg/g pr. biomass or mg/mL liquor)	TFA (mg/g of untreated biomass)	DHA (mg/g pr. biomass or mg/mL liquor)	DHA (mg/g of untreated biomass)		
Γ	S2	ACO, 160°C, 120 min	13.76	7.6	4.65	2.6		
C6-rich fraction 🚽	S3	ACO, 175°C, 120 min	9.97	4.5	3.34	1.5		
	S6	EtOH, 175°C, 120 min	18.93	9.0	5.53	2.6	•	1
Ĺ	L2	ACO, 160°C, 120 min	1.95	9.23	0.19	0.9		1 m
C5-rich fraction	L3	ACO, 175°C, 120 min	0.94	4.68	0.02	0.1		
	L6	EtOH, 175°C, 120 min	2.97	10.71	0.39	1.4	•]
		untreated	3.69	3.8	0.46	1.1	←	-

Employment of fed-batch strategy with biomass hydrolysates

----- THF, O2 16 bar, 150°C, 60 min _____ EtOH, O2 16 bar, 175°C, 60 min

Experiments in shaking flasks

Substrate: H₂O/THF (50/50%), O₂ 16 bar, 150°C, 120 min

Strategy	Biomass (g/lt)	% TFA (w/w)	TFA (g/lt)	%DHA (w/w)	DHA (g/lt)
Batch	7.90	54.30	4.29	29.40	1.26
Fed-batch	10.28	38.50	3.96	43.47	1.72

Substrate: H₂O/EtOH (50/50%), O₂ 16 bar, 175°C, 60 min

Strategy	Biomass (g/lt)	% TFA (w/w)	TFA (g/lt)	%DHA (w/w)	DHA (g/lt)
Batch	8.60	47.98	4.13	29.51	1.22
Fed-batch	12.71	44.93	5.71	38.67	2.21

% TFA - DHA (w/w)

Karnaouri A., Chalima A., Kalogiannis K. et al. Bioresource Technology, 2020, 303, 122899

Fed-batch strategy in bioreactors

- BioXplorer 100 | bench-top, parallel 8 bioreactor platform
- Constant agitation (250 rpm) aeration (1 vvm)
- pH set at 6.5 (control with HCl)
- 25 g/L sugars, 7.5 g/L YE, 25 g/L sea salts
- Carbon source feeding at <u>120, 168, 216 h</u>

Experiments with pure sugars

Experiments with beechwood hydrolysate

Glycose/Xylose (75:25) Glycose/Xylose (50:50) Glycose/Xylose (15:85)

EtOH hydrolysate

— ACO hydrolysate

Conclusions and Future perspectives

What we have learned so far...

What we are interested to explore further...

- OxiOrganosolv is an efficient pretreatment method for biomass delignification – agnostic process
- Utilization of both pentose and hexose sugars for DHA production by *C. cohnii*
- Fermentation in batch-mode has several limitations

- Addressing the challenges of liquid fraction utilization
- Optimization of culture conditions Fermentation in bioreactors with continuous and fed-batch mode of feeding
- Performing technoeconomical studies of the process

Biotechnology Laboratory, School of Chemical Engineering, NTUA

Assoc. Prof. Evangelos Topakas Dr. Anthi Karnaouri Dr. Angelina Chalima PhD student Georgia Asimakopoulou PhD student Savvas Staikos Despoina Varamogianni-Mamatsi

Centre for Research and Technology-Hellas, CPERI/CERTH

Dr. Angelos Lappas Dr. Konstantinos Kalogiannis Dr. Stelios Stefanidis Anna-Maria Tzika

Thank you for your attention!

NoWasteBioTech: "Novel Conversion Technologies of Waste Biomass to Food additives and Fine Chemicals"

AMALTHYA: "Valorisation of Agricultural Residues by Transformation in Cascade of Bio- and Thermo- Chemical Routes to Food Additives of High Added Value" - EPAnEK 2014-2020 Operational Programme, Competitiveness-Entrepreneurship-Innovation

