

Innovative micronutrient fertilizers by biosorption for organic farming

<u>Mateusz Samoraj^{a,b},</u> Agnieszka Dmytryk^b, Katarzyna Chojnacka^a

^aDepartment of Advanced Material Technologies, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland

^bEKOPLON Sp. z o.o. sp. k., Grabki Duże 82, 28-225 Szydłów, Poland

Introduction

- Population growth rate exceeds grain yield by three times, crop area remains the same. The global crisis has made the situation much worse, millions of people are at risk of starvation.
- More than two-thirds of European Union countries are severely deficient in at least one of the micronutrients.
- Today, the main goal is to improve the efficiency of fertilizer ingredients while reducing the environmental impact of their use. The European Green Deal calls for a 25% share of organic farming.
- Micronutrient fertilizers for organic farming will play an increasingly important role.

Gaur, N., Flora, G., Yadav, M., & Tiwari, A. (2014). A review with recent advancements on bioremediation-based abolition of heavy metals. Environmental Science: Processes & Impacts. 16(2), 180-193.

Biosorption – new trends

Biosorption process

Focus on: sorbate removal

Focus on: biosorbent enrichment

Wastewater treatment (90 600 papers) Biological feed supplements with micronutrients (7 040 papers)

Micronutrients fertilizers

(1 640)

mateusz.samoraj@pwr.edu.pl

Scholar.google.com - keywoerds: biosorption and wastewater, biosorption and feed supplements, biosorption and valorisation and micronutrient fertilizer

Potential biosorbents BIOSORBENTS

Plants

- Leaves
- Seeds

Fungi

- Micromycetes
- Macromycetes

Algae

- Microalgae
- Macroalgae

Animal

- Bones
- Eggshells

Microbes

- Bacteria
- Archea

Waste

- Manure
- Agricultural waste

5

mateusz.samoraj@pwr.edu.pl

Chojnacka, K. (2010) Biosorption and bioaccumulation-the prospects for practical applications. Environment International, 36(3), 299-307

Micronutrient fertilizers for organic farming

Chojnacka, K., Tuhy, Ł., Samoraj, M., Michalak, I., Witek-Krowiak, A. & Górecki, H. (2014) New Biological Fertilizer Components with Micronutrients by Biosorption, Fertilizer Technology: Synthesis, vol. 2, pp 376-409

Previous studies

Biosorption of metal ions to the biomass of seeds of berries 2012/05/E/ST8/03055

- Basic research.
- Biosorption in laboratory and bench scale.
- Selection of process parameters for single ions: Zn(II), Mn(II), Cu(II).
- Preliminary utility tests on plants.

Main results

Petri dish tests

- Tests on garden cress according to IRST standard
- Promising results comparable to commercial chelates products

Pot trials

 Tests on white mustard – up to 2.5x higher dry mass, Zn, Mn and Cu content were higher by 25%, 18% i 38%, respectively

Field trials

- Two-season tests on maize 10% biofortification
- Tests on raspberries 12% biofortification

8

Current studies

- Implementation project: "Innovative micronutrient fertilizers by biosorption for organic farming" TANGO-V-C/0019/2021-00, WUST and EKOPLON consortium.
- Development of production technology for new biomass-based fertilizers.
- Biosorption carried out in a multi-ion system.
- Use of standardized waste streams as micronutrient solution.
- Scaling up the biosorption process to pilot conditions.

Expected results

- Organo-mineral fertilizers with micronutrients in organic form for food biofortification (Zn, Cu, Fe, Mn).
- Fertilizers dedicated to organic crops: cucumber and/or berries.
- Fertilizer formulation safe for plants and the environment.
- Waste-free technology (micronutrient recovery).

Determination of sorbate concentration and process duration time

- The experiment was conducted until the matrices were fully loaded - i.e. for 9h.
- The volume of the bed was 40 mL.
- Each matrix was prepared in 3 replicates.
- The experiments • were conducted using Zn(II) at a concentration of 300 ppm.
- The sorption capacity of the 10000 matrices was determined by 0 comparing ICP-OES results 0 for biomass before and after the biosorption process.

Fig. 1. Sorbate concentration and biosorption time determination.

Selection of sorbate concentration in a multielemental biosorption

	Content in eniched biomass (ppm)			
Concentration Cu:Mn:Zn (ppm)	Cu	Mn	Zn	Sum
38:300:65	28 635 ± 6 861	14 304 ± 1 474	2 257 ± 103	45 198
75:300:125	32 183 ± 2 253	9 973 ± 981	2 954 ± 295	45 111
150:600:250	34 082 ± 4 876	13 003 ± 3 007	3 763 ± 832	49 648
100:100:100	32 209 ± 6 049	5 355 ± 240	6 399 ± 355	43 965
200:200:200	33 294 ± 3 518	6 263 ± 98	6 526 ± 102	46 084
300:300:300	36 391 ± 6 840	6 562 ± 277	6 868 ± 325	49 822

Final process parameters

	-
Sorbate	Cu(II), Zn(II), Mn(II)
Biosorbents	Blackcurrant seeds, Baltic algae (Fucus)
Sorbate concentration	300 mg/L
Reactor volume	70L
Micronutrient solution volume	200L
рН	5
Temperature	25°C
Material losses	10%
Volumetric flow rate	1L/min
Process time	6h
Drying	24 h, 50°C

Installation

Fig. 4. Simplified scheme of the process in fixed bed mode – a system of two column reactors

Streams: B – Biomass, M – Micronutrients, W- Deionized water.

Main equipment: 1 – Biomass homogenizer; 2 – Micronutrient solution tank; 3 – Stirrer; 4, 15, 17– Peristaltic pumps; 8- Reactor tanks; 10 – Sieve; 16 – Recirculated solution tanks (equipped with pH regulator).

Multielemental biosorption results

	Baltic algae, raw (mg/kg)	Baltic algae, enriched (mg/kg)	Enrichment coeficient
Cu	17.2 ± 6.0	22 946 ± 1 848	1 302
Mn	417 ± 17	5 684 ± 565	13.6
Zn	71.1 ± 13.6	9 291 ± 1 112	130
	Blackcurrant seeds, raw (mg/kg)	Blackcurrant seeds, enriched (mg/kg)	Enrichment coeficient
Cu	Blackcurrant seeds, raw (mg/kg) 12.8 ± 0.2	Blackcurrant seeds, enriched (mg/kg) 8 415 ± 3 296	Enrichment coeficient 6 584
Cu Mn	Blackcurrant seeds, raw (mg/kg) 12.8 ± 0.2 26.1 ± 0.2	Blackcurrant seeds, enriched (mg/kg) 8 415 ± 3 296 2 802 ± 1 029	Enrichment coeficient 6 584 107
Cu Mn Zn	Blackcurrant seeds, raw (mg/kg) 12.8 ± 0.2 26.1 ± 0.2 25.6 ± 1.3	Blackcurrant seeds, enriched (mg/kg) 8 415 ± 3 296 2 802 ± 1 029 8 030 ± 220	Enrichment coeficient 6 584 107 312

Multielemental content of product

Macronutrient	Content (%)	Micronutrient	Content (g/kg)
С	45.1	Cu	8.42
Ν	4.13	Mn	2.80
P ₂ O ₅	1.36	Zn	8.30
K ₂ O	1.20	Fe	0.256
SO ₃	0.840	Toxic elements*	Content (mg/kg)
CaO	0.615	Cd	3.85.10-4
MgO	0.0965	Ni	4.63·10 ⁻³
Na ₂ O	0.0310	As	2.65·10 ⁻⁵
		Pb	2.42·10 ⁻³
*Below the legal limit		Cr	6.78·10 ⁻³
		Hg	1.16·10 ⁻⁵

*Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019.

Final product

Fig. 9. Final product

Fixed bed modelling

Model	Equation	Linear form		Parameters	R ²
Thomas	$\frac{c_t}{c_0} = \frac{1}{1 + \exp\left[\left(\frac{k_{Th}q_{\theta}x}{Q}\right) - k_{Th}c_0t\right]} \ln\left(\frac{c_0}{c_t} - 1\right) = \frac{k_{Th}q_{\theta}x}{Q} - k_{Th}c_0t$		Zn(II)	$k_{Th} = 0.0209 \text{ (mL/min mg)}$ $q_e = 8.66 \text{ (mg/g)}$	0.914
		Cu(II)	k _{īh} = 0.0353 (mL/min mg) q _e = 4.05 (mg/g)	0.948	
		Mn(II)	k _{īh} = 0.0523 (mL/min mg) q _e = 5.52(mg/g)	0.858	
Nelson- Yoon	$\frac{c_t}{c_0-c_t} = \exp(k_{YN}t - \tau k_{YN}) \qquad ln\frac{c_t}{c_0-c_t} = k_{YN}t - \tau k_{YN}$	Zn(II)	τ=14.8 (min) k _{yn} = 0.0053 (1/min)	0.914	
		$ln\frac{c_t}{c_0-c_t} = k_{YN}t - \tau k_{YN}$	Cu(II)	τ= 12.6 (min) k _{YN} = 0.005 (1/min)	0.948
		Mn(II)	τ= 12.9 (min) k _{YN} = 0.097 (1/min)	0.858	
Wolborska	$\partial \frac{\partial c_b}{\partial t} + v \frac{\partial c_b}{\partial H} + \frac{\partial q}{\partial t} = D_{ax} \frac{\partial^2 c_b}{\partial H^2} \qquad ln\left(\frac{c}{c_0}\right) = \frac{\beta_a c_0 t}{q} - \frac{\beta_a H}{v}$	Zn(II)	β _a = 0.0240 (1/min) q= 8.46 (mg/g)	0.833	
		Cu(II)	β _a = 0.0253 (1/min) q= 4.72 (mg/g)	0.941	
		Mn(II)	β _a = 0.0251 (1/min) q= 6.19 (mg/g)	0.523	
Adams- g Bohart	$\frac{C_t}{C_0} = \exp\left(k_{AB}C_0 t - k_{AB}N_0\frac{z}{u_0}\right) \ln\left(\frac{C_t}{C_0}\right) = k_{AB}C_0 t - k_{AB}N_0\frac{z}{u_0}$	Zn(II)	N ₀ = 3188 (mg/L) k _{AB} = 0.00751 (mL/min	0.833	
		Cu(II)	$N_0 = 1991 (mg/L)$ $k_{AB} = 0.0127 (mL/min mg)$	0.941	
		Mn(II)	$N_0 = 1547 (mg/L)$ $k_{AB} = 0.0162 (mL/min mg)$	0.523	

Fixed bed modelling

Waste streams as micronutrients source - standarization

Perspectives and next steps

Scale up to pilot plant scale transfer of verified bench-scale solutions

Selection of the process parameters minor modifications of installation

Registration of the new product pot and field trials of the final formulation on selected plant

The work was supported by National Centre for Research and Development, under the TANGO-V-C/0019/2021-00 project, entitled: "Innovative micronutrient fertilizers by biosorption for organic farming".

Thank you for your attention!

Mateusz Samoraj, PhD

Department of Advanced Material Technologies, Wrocław University of Technology Smoluchowskiego 25, 50-372 Wrocław, Poland mail: mateusz.samoraj@pwr.edu.pl Tel. +48 71 320 3437