A rapid food waste valorisation into organic fertilizer using a so called disruptive technology

Munoo Prasad^{1,2,*}, Michael Gaffney³ Nikos Tzortzakis^{2,*} Aaron Jennings⁴

¹Compost/AD Research & Advisory (IE, CY), Naas, Ireland.

²<u>Department of Agricultural Sciences, Biotechnology and Food Science</u>, Cyprus University of Technology, Limassol Cyprus.,³Horticultural Development Department, Teagasc, Ashtown, Ireland.⁴ Harp Renewables, Kentstown,,Ireland

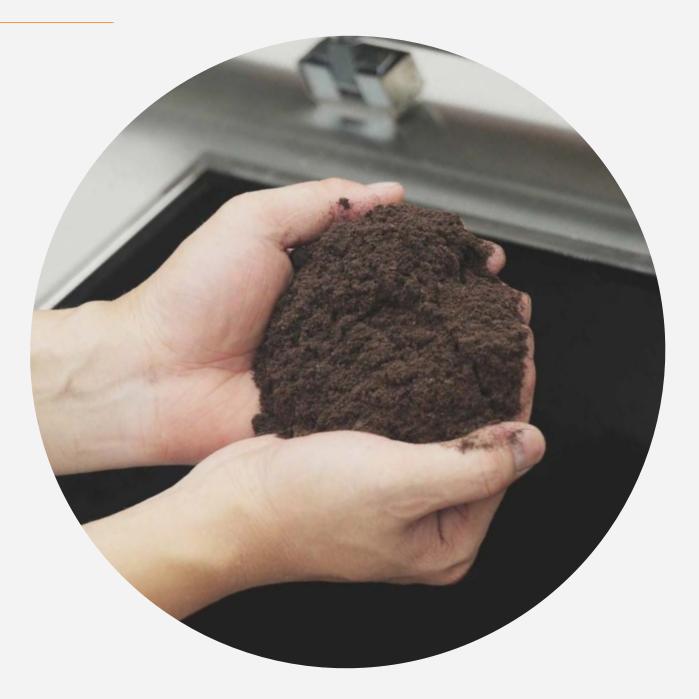
My talk will cover:

- Short description of the equipment
- Environmental Performance from its Use
- Plant nutrient properties of the product derived from foodwaste
- Growing trial using grass as a model crop and comparison with composted biowaste and composted green waste
- Emphasis on nutrient content and release over 5 + months with emphasis on N, P and K
- Residual nutrient level in the soil after cropping
- Conclusion

Harp's Bio-Technology

How It Works

The Harp Bio-Digester's on-board processor controls the internal parameters, such as temperature, pH, moisture, oxidation, and surface area, for optimum organic breakdown, achieving a decomposition phase within 24 Hours.



Harp's Bio-Technology End-Product

Weight & Volume Reductions 70 - 85%

Processing Time

24 Hours

Harp's Bio-Technology **Features**

Touch Screen Computerised Control

An easy-to-use on-board touch screen display shows the status, history and performance of the Bio-Digester

Active Carbon Filtration System

Harp's Filtration System treats all potential environmental pollutants by ensuring they are below 1 part per million

Load Cells for Automatic Waste Reporting

Door and Weight Sensors track and record times, dates, volumes and weights onto a downloadable CSV file

Bio-Digester™ Product Line

¹ 30-day month

² Assumes 75% conversion; 25% residual material by weight

³ Assumes Bulk Density of 0.4818 Kg/L

⁴ Assumes Bulk Density of 0.5980 Kg/L

Environmental Performance

Emissions

- ✓ VOC <0.278 mg/m3
- Respiratory Dust <0.5 mg/m3
- ✓ Hydrogen Sulphide < 0.1ppm</p>
- 🗸 Ammonia <0.1 ppm

Air Quality Certificate of Analysis

SAL Reference:	621411
Customer Reference:	HARP RENEWABLES

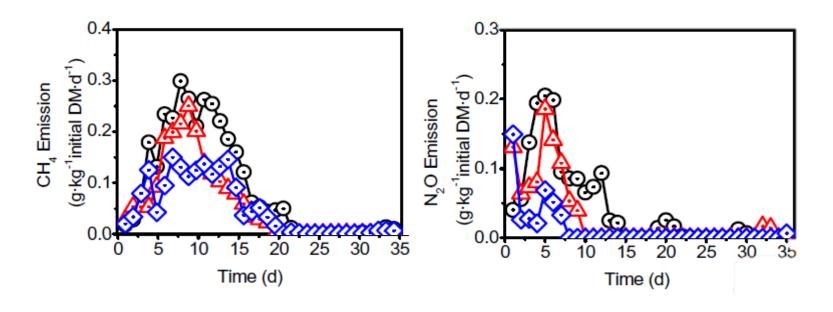
Filter+PUF IOM Analysed as Filter+PUF IOM

MI	scei	lane	ous	

		621411 002	621411 004			
		Custo	mer Sampl	e Reference	1. DIGESTOS FILTER+FOAM	2.BLANK FILTER+FOAM
				Fest Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Total inhalable dust	Grav (5 Dec)	0.10	ma	U	<0.10	⊲0.10

SAL Reference:	621411								
Customer Reference:	HARP RENE	WABLES	5						
Filter IOM	Analysed as	nalysed as Filter IOM							
Miscellaneous									
			SA	L Reference	621411 001	621411 003			
		Custo	mer Sampl	e Reference	1. DIGESTOS FILTER+FOAM	2.BLANK FILTER+FOAM			
			1	Test Sample	AR	AR			
Determinand	Method	LOD	Units	Symbol					
Respirable Dust	Grav (5 Dec)	0.05	mg	U	0.15	<0.05			

SAL Reference:	621411	CWP of a definition
Customer Reference:	HARP RENEWABLES	
ube (Charcoal 226-09)	Analysed as Tube (Charcoal 226-09)	

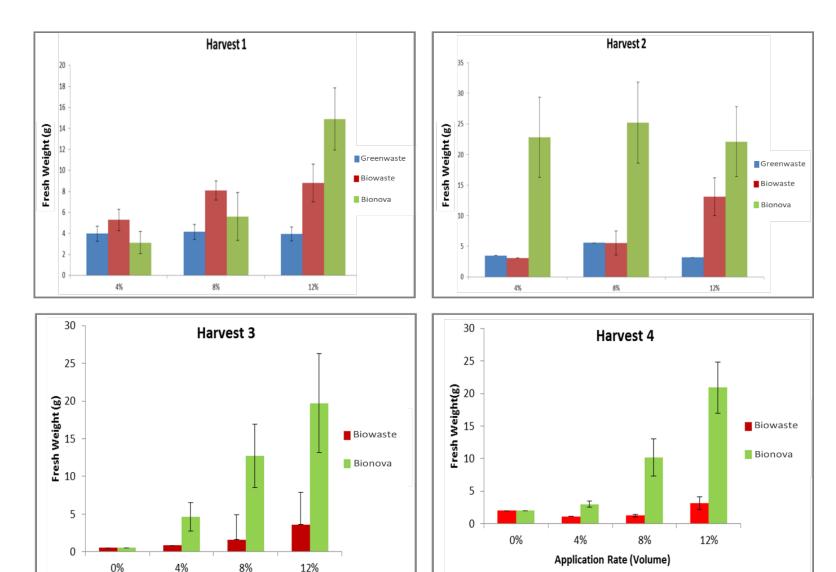

Top 10 screen

1.10		121	SA	L Reference	621411 005	621411 006 4. BLANK VOC	
		Custor	mer Sampl	e Reference	3. DIGESTOS		
100		Test Sample AR					
Determinand	Method	LOD	Units	Symbol			
Number of additional significant peaks	Calc			N	N.D.	N.D.	
VOC (Total excluding targets)	GC/MS	1	μg	N	2	<1	
Volatile Organic Compounds (Top 10 Screen)	GC/MS	10	μg	N	<10	<10	

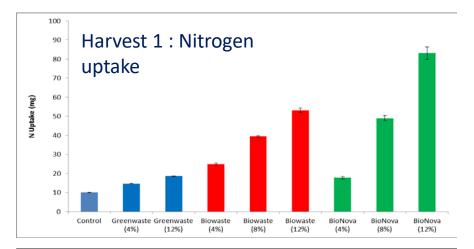
Corporate social responsibility Unknown On-site Emissions and Foul Odours(brown bin,EU)

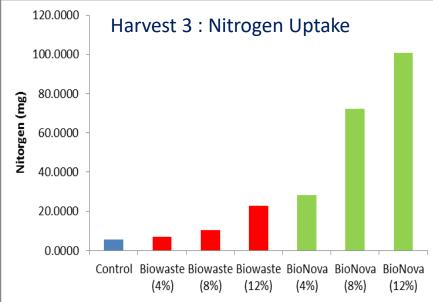
Academic research on composting, concludes that over 80% of the CH4 and N2O is produced during this active phase

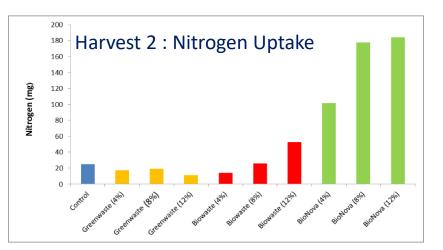
Growing Trial

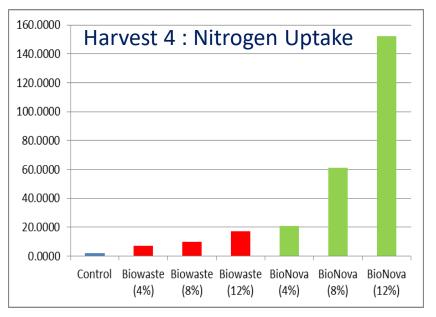

- Application Rate : The three materials (Harp/Bionova, CGW, CBW . Brown bin)) applied on volume basis at 4 rates:
- 1. 0% (Control),
- 2. 4%,
- 3. 8%,
- **4**. 12%
- Crop : Grass used as a model crop grown for 160 days (5+ Months)
- Parameter : 4 Harvests, Fresh matter yield, Dry matter yield ,N , P and K (and other macronutrients) analysed.
- Nutrient Uptake : calculated with emphasis on N.P and K
- Residual Nutrients : Soil after 4 harvests analysed for residual total N, available P and available K (Mehlich extract)

Growing Trial

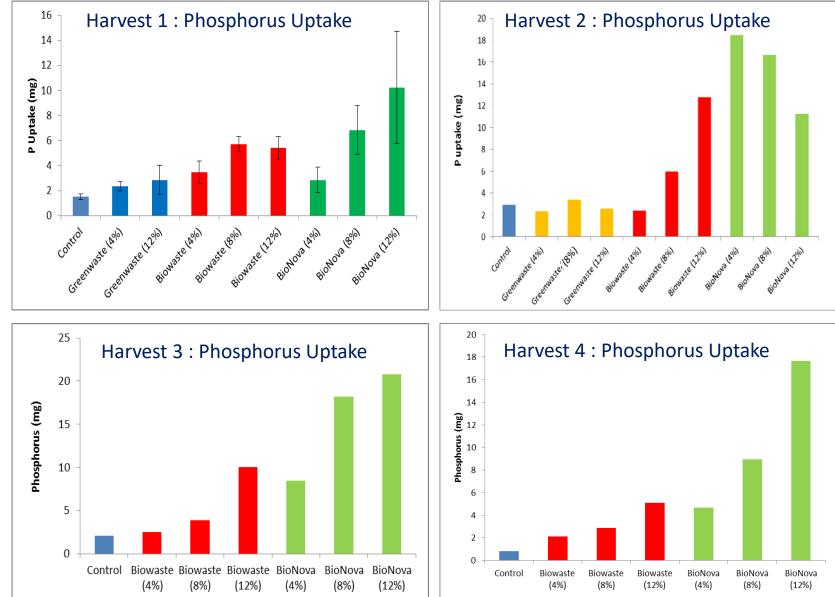

Some physical and chemical characteristics of the material tested

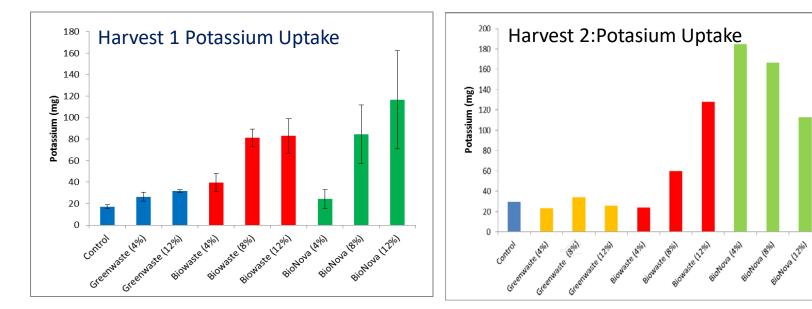

Material	Bulk Density (g/L)	Organic C (%)	TKN (%)	CAT NH4- N (g/L)	CAT NO3- N (g/L)	Ava.N	CAT -P (g/L)	CAT-K (g/L)
BioNova	570	52	3.09	0.4274	0.1038	0.5312	1.224	12.008
Green waste	577	26.5	2.33	0.079	0.1225	0.2015	8.442	8.442
Biowaste	620	13.4	1.86	0.227	0.2115	0.429	2.471	2.471

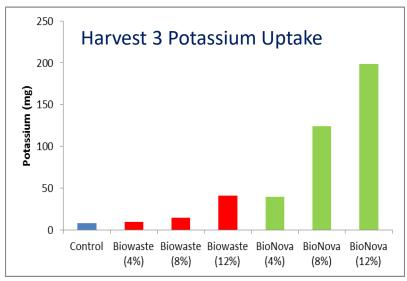

Comparative fresh weight recovery for composts and BioNova material over 4 harvest periods

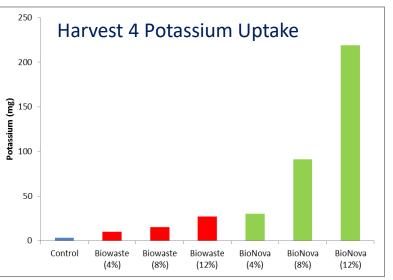


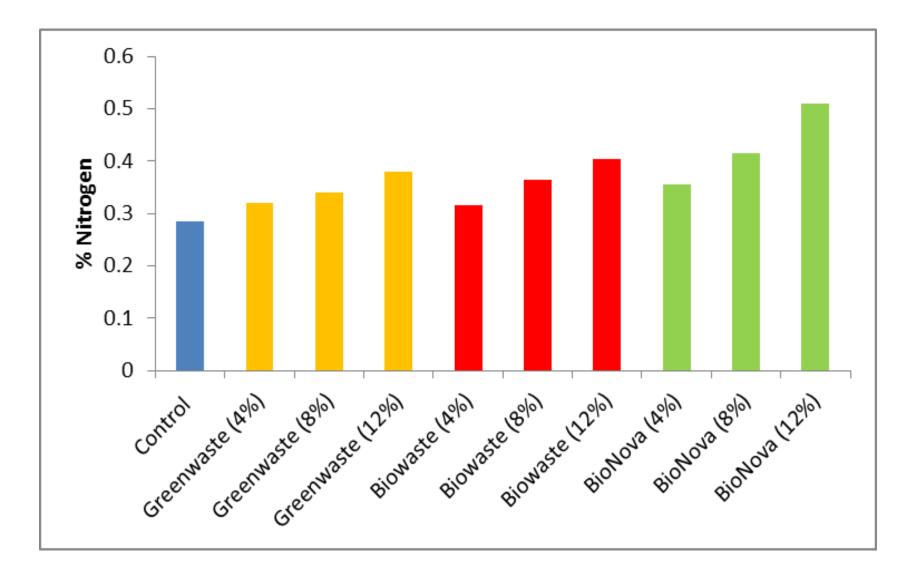
Nitrogen uptake from various materials over 4 harvests

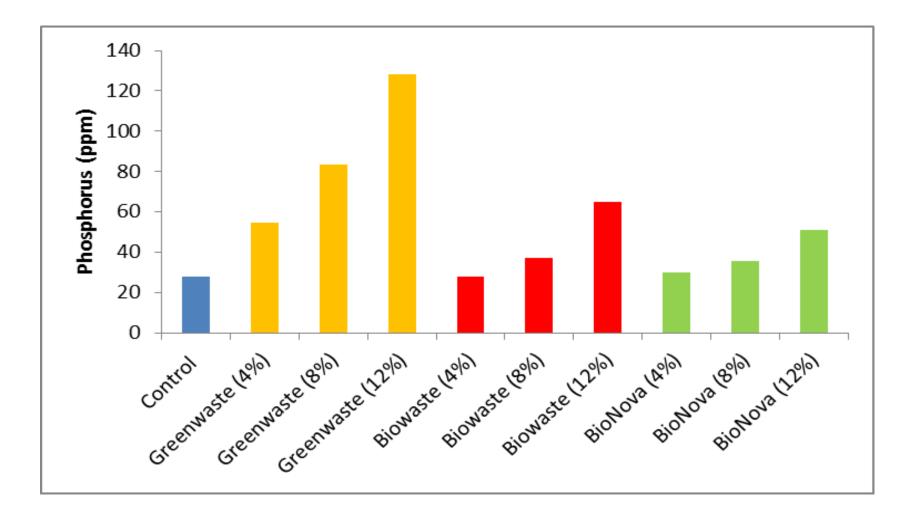


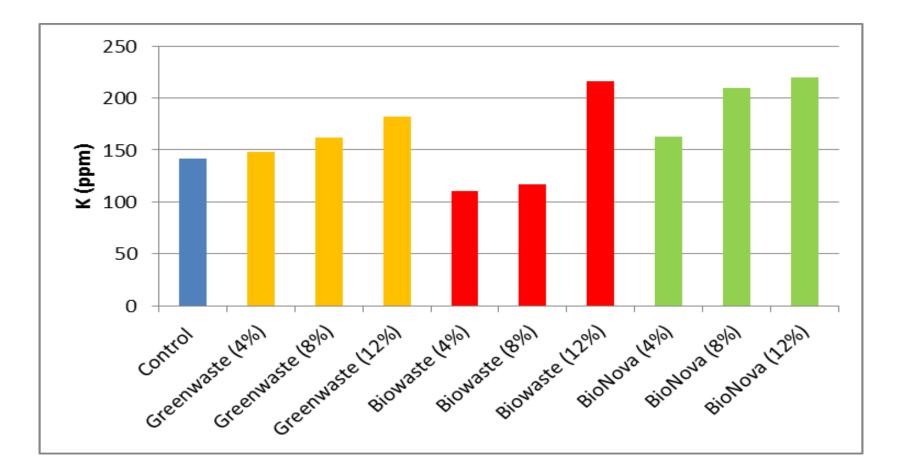



Phosphorus uptake from various materials over 4


harvests


Potassium uptake from various materials over 4 harvests




Soil Analysis: Post Experiment: Nitrogen

Soil Analysis: Post Experiment: Phosphorus

Soil Analysis: Post Experiment: Potassium

Ideal for processing foodwaste, processed within 24 hours

- High potential as a possible replacement for mineral N fertilizer and P fertilizer(Mineral N fertilizer production leads to high GHG emissions while P is considered as a critical raw material by the EU)
- Low in losses of GHG e.g. ammonia during processing and high Carbon content retained.
- Better Environmental Performance than Industrial food waste Composting?
- High nutrient availability and prolonged nutrient release
- Low moisture content and large volume reduction
- Fits in with the EU strong policy on Circular Economy
- Fits in also with new EU Fertilizer Regulations

Thank you for your attention, any questions?

Growing Trial

Conventional Compost	Harp Organic Fertiliser
Microbes create self-generated heat	Microbes secrete potent hydrolytic enzymes - bio-catalysts for accelerated thermal process
Significant GHG emissions: $CO_2 + N_2O + CH_4$	Low GHG emissions. Binds carbon & nitrogen
Temperature 55 to 65 C for weeks to months.	Temperature >70 C; Pathogen free
Waste volume reduced 40-50%.	Waste volume reduced 75-80%
Requires structure. Suitable for woody material	Ideal for food waste
Open batch system; consumes space	Closed continuous system; small footprint
Open windrows carry risk of rodents etc.	No risk of rodents and other pests
Variable moisture. Sometimes wet & heavy.	Low moisture content; Light weight material.
Some odours present	Odor-free. Enzymatic process binds ammonia.
Lower & less consistent nutrient content	Higher & more consistent nutrient content.
Suitable as soil amendment	Suitable as soil amendment and fertiliser

Impact of Physical and Chemical Characteristics on application rates (Volume)

	Application Rate	Weight of	Dry Weight of
	(Volume / ml)	Addition (g)	Addition (g)
BioNova (4%)	80	45.6	39.31
BioNova (8%)	160	91.2	78.61
BioNova (12%)	320	136.8	117.92
Greenwaste (4%)	80	46.16	20.22
Greenwaste (8%)	160	92.32	40.44
Greenwaste (12%)	320	138.48	60.65
Biowaste (4%)	80	49.6	45.19
Biowaste (8%)	160	99.2	90.37
Biowaste (12%)	320	148.8	135.56