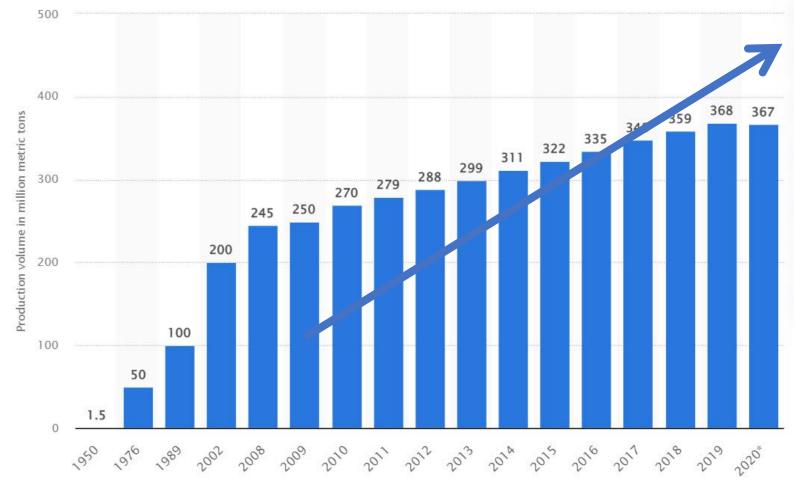


Hydrothermal treatment of plastic waste within a circular economy perspective

H. Mumtaz, S. Werle, S. Sobek, M. Sajdak, R. Muzyka

Outline of presentation

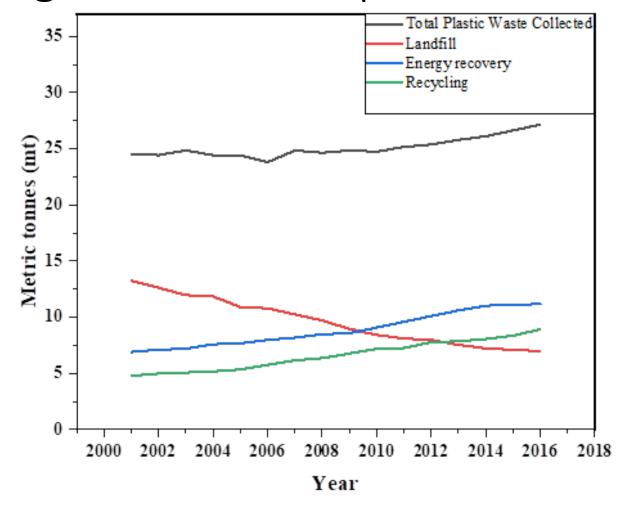
- ✓ Introduction
 - world plastic problem
 - waste management techniques
 - Recycling routes for plastic wastes
- Hydrothermal Treatment (HT)
 - ✓ Advantages
 - **∠** Priniciples
 - ✓ Features
 - Reactor used
- Wind turbine problem and HT results; ongoing projects



Introduction - world plactic problem

Annual production of plastics worldwide from 1950 to 2020(in million metric tons)

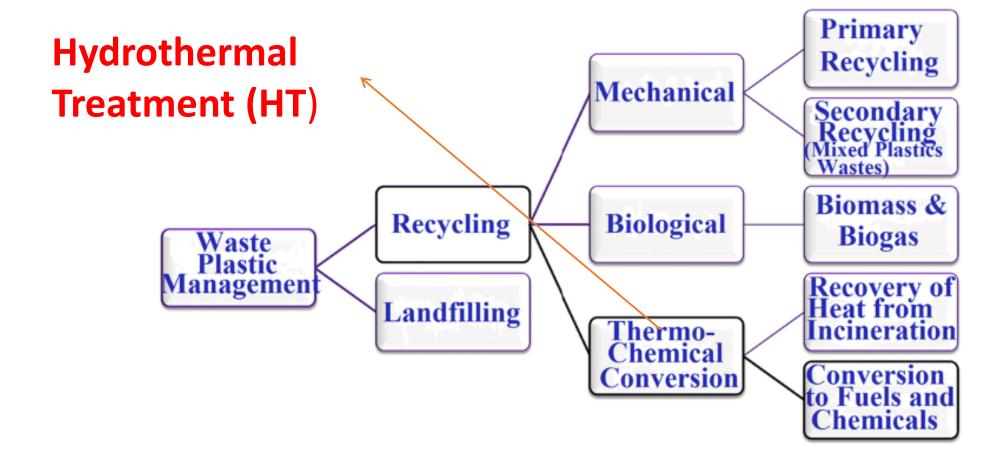
© Statista 2022



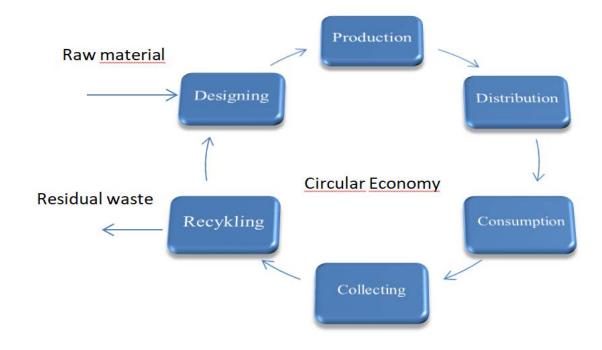
Introduction - waste management techniques

Different types of waste management techniques employed from 2001 to 2016

According to an estimation total 27 million tonnes of waste plastic was collected through out of Europe in year 2016. 31% of this total amount was recycled successfully, 42% was subjected to energy recovery purpose and remaining 28% was landfilled



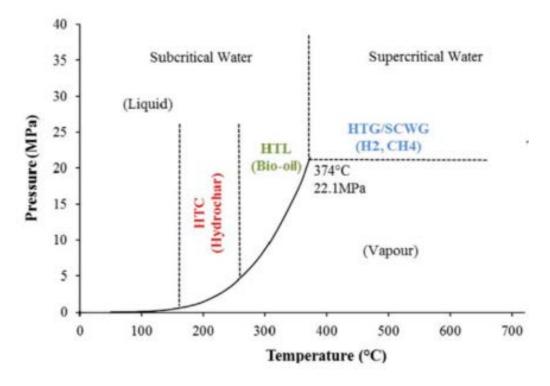
Recycling routes for plastic wastes



Circular economy

Hydrothermal Treatment (HT) processes can play a role in the transition to a circular economy

Hydrothermal Treatment (HT) - advantages


- reglecting the pre-drying process that is highly energy intensive
- the water used as a medium the less activation energy requirements and flexibility in producing the fuels
- relimination of biological risks like pathogens existence due to autoclaving at temperature above 120°C (in the case of biomass eg.)
- products from hydrothermal treatment of waste have less moisture content and higher heating values

Hydrothermal Treatment (HT) - priniciples

In this process the waste material is converted into useful product for energy production applications by heating it at elevated temperatures in the presence of water in high pressure.

Classification of HTP of biomass with reference to the pressuretemperature phase diagram of water

https://doi.org/10.1016/j.biombioe.2020.105479

HT processes - features

				-		
Processes	Temperature (T, °C)	Pressure (MPa)	Reaction time	Catalyst	Main products	
HTC						
Low T	250	2	Several hours	Not essential	Char	
High T	250-800	2	Several hours	Optional Char		
HTL						
Low T	280-370	10-25	Few seconds	Optional	Oil	
High T	300–600	10–25	Few seconds	Alkaline salts: Na ₂ CO ₃ , KCl, KOH; Increasing oil yield; Heterogeneous catalysts under high pressure H ₂ C/H ratio		
HTG						
Near-critical	300-500	Various	Few seconds	Metal catalyst and alkaline salts	CH ₄	
Supercritical	500-800	Various	Few seconds	Metal catalyst and alkaline salts	Syngas H2 with minor CO2, C1-C4 gases	
Aqueous phase reforming	220–250	1.5–5	Several hours	Pt/Al ₂ O ₃ , Pt/ZrO ₂ , Rh, Ni and on SiO ₂ , etc.	H ₂ and CO ₂ with minor C1–C6 alkanes	

https://doi.org/10.1016/j.biombioe.2020.105479

Reactor setup

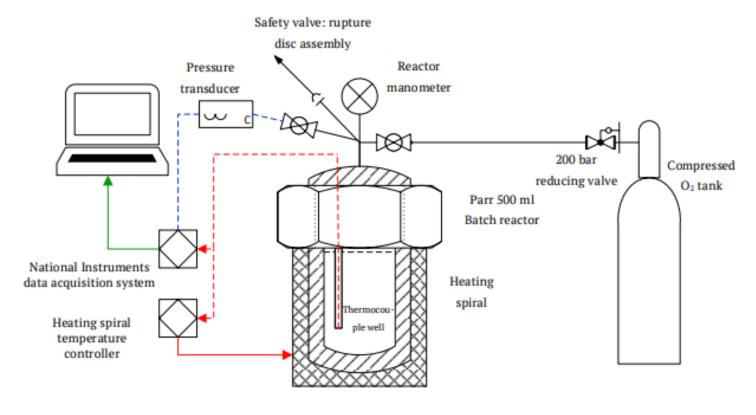
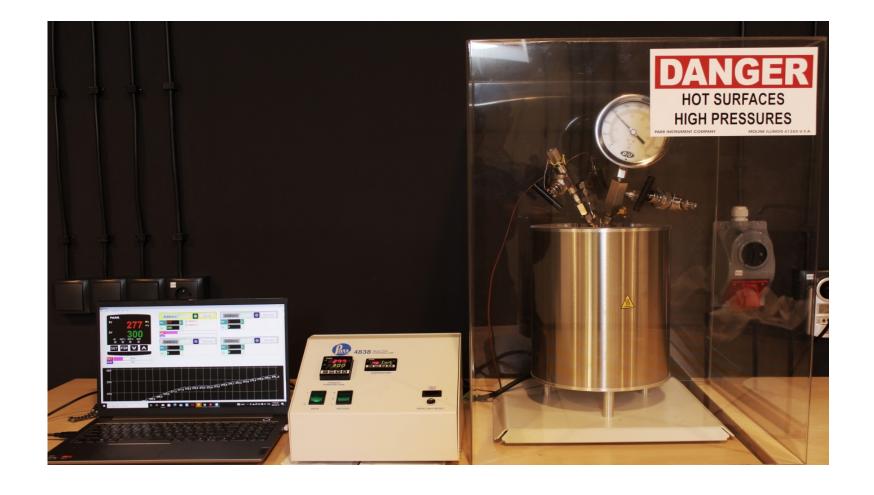
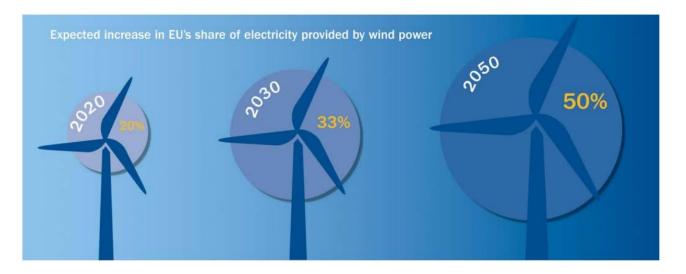



Figure 4. Parr 4650 reactor setup with NI data acquisition system for experimental investigation of the oxidative liquefaction of the plastic waste process.

Reactor setup



Wind turbine probelm

Aerial view of a turbine blade graveyard

Wind turbine probelm

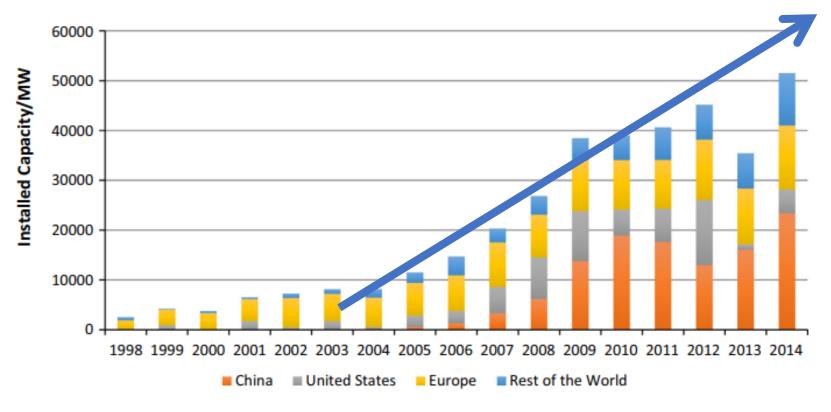


Fig. 5. Annual installed capacity by region. Source: (Liu and Barlow, 2015).

Wind turbine probelm

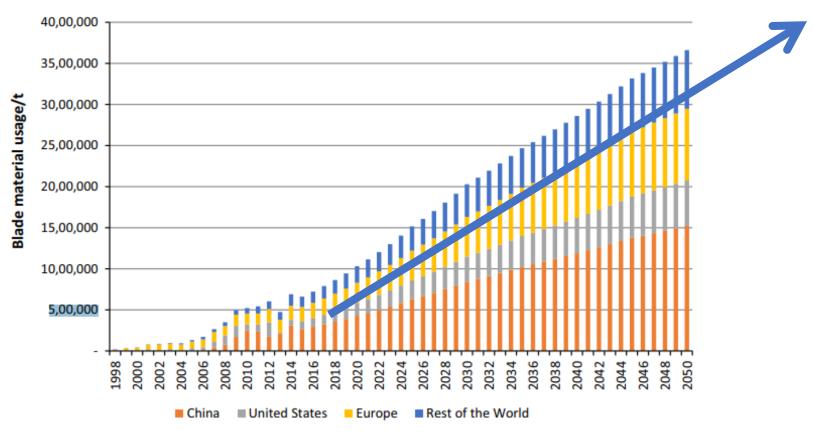


Fig. 6. Annual WTB material usage. Data after 2014 is calculated based on the moderate growth rate scenario.

HTL of wind turbine blades — 1st trials

Amount of Waste (g)

Waste to liquid ratio
15

Research – projects in progress

Oxidative liquefaction of plastic waste. Experimental research with multidimensional data analysis using chemometric methods

2021/41/B/ST8/01770 Departament of Thermal Technology, Silesian University of Technology, Research grant, National Science Center, 2011/03/D/ST8/04035, 2022-2024

Within the proposed project, a study on the oxidative liquefaction of waste plastics, including COVID-19 waste (PW), photovoltaic (PV) waste, wind turbine (WT) blades, and general domestic plastic waste (GDW). The project comprises experimental research on the liquefaction of various plastic waste samples in subcritical water enhanced with oxidative additives.

Research – projects in progress

EuReComp "European recycling and circularity in large composite components", 2022-2026;

Activit	y. HORIZON OUT ZOZI REGISIENOE OF	vi.				
N.	Proposer name	Country	Total Cost	%	Grant Requested	%
1.	NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA	EL	800,250	8.99%	800,250	8.99%
	INEGI - INSTITUTO DE CIENCIA E INOVACAO EM	PT	599,900	6.74%	599,900	6.74%
3	ENGENHARIA MECANICA E ENGENHARIA INDUSTRIAL TECHNISCHE UNIVERSITAET DRESDEN	DE	598,625	6.72%	598.625	6.72%
	Elbe Flugzeugwerke GmbH	DE	300,000	3.37%	300,000	3.37%
Ι'	TIRIAKIDIS BASILEIOS ANONIMI BIOMICHANIKI EMPORIKI		,		,	I
5	TECHNIKI ETAIRIA AE	EL	299,375	3.36%	299,375	3.36%
	INNOVATION IN RESEARCH & ENGINEERING SOLUTIONS	BE	371,250	4.17%	371,250	4.17%
	HOCHSCHULE FUR TECHNIK WIRTSCHAFT UND KULTUR LEIPZIG	DE	499,987	5.62%	499,987	5.62%
	Kunststoff-Zentrum in Leipzig gGmbH	DE	300,000	3.37%	300,000	3.37%
	DALLARA AUTOMOBILI SPA	IT	501,250	5.63%	501,250	5.63%
	POLITECHNIKA SLASKA	PL	404,825	4.55%	404,825	4.55%
	INSTITUTO TECNOLOGICO DE ARAGON	ES	465,125	5.22%	465,125	5.22%
12	POLITECNICO DI TORINO	IT	350,375	3.94%	350,375	3.94%
	ASOCIACION DE INVESTIGACION METALURGICA DEL NOROESTE	ES	649,375	7.29%	649,375	7.29%
	PANEPISTIMIO PATRON	EL	600,000	6.74%	600,000	6.74%
	BIOG3D MONOPROSOPI IKE	EL	380,000	4.27%	380,000	4.27%
	EASN TECHNOLOGY INNOVATION SERVICES BVBA	BE	250,000	2.81%	250,000	2.81%
	STRATAGEM ENERGY LTD	CY	250,625	2.81%	250,625	2.81%
	ANTHONY, PATRICK & MURTA-EXPORTACAO LDA	PT	351,250	3.95%	351,250	3.95%
19	FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.	DE	432,345	4.86%	432,345	4.86%
20	CIRCULARISE BV	NL	499,075	5.61%	499.075	5.61%
	Przedsiebiorstwo Wielobranzowe Anmet Andrzej Adamcio	PL	0	0.00%	0	0.00%
	CG RAIL - CHINESISCH-DEUTSCHES FORSCHUNGS- UND					
22	ENTWICKLUNGSZENTRUM FURBAHN- UND	DE	0	0.00%	0	0.00%
1	VERKEHRSTECHNIK DRESDEN GMBH					
	TILIA GMBH	DE	0	0.00%	0	0.00%
	Industrie- und Handelskammer zu Leipzig	DE	0	0.00%	0	0.00%
25	OFFSHORE RENEWABLE ENERGY CATAPULT	UK	0	0.00%	0	0.00%
	Total:		8,903,632		8,903,632	

provide sustainable methods towards recycling and reuse of composite materials, coming from components used in various industries, such as aeronautics and wind energy

The Objectives
To propose innovative dismantling and sorting systems enabling reuse and functional recycling of complex composite materials;
To develop and integrate novel solutions for a higher reuse of whole products and components (i.e. products' reusability, upgradability, etc);
Pilot demonstration of reuse/recycling approaches of composites & secondary raw materials;
To develop tools to demonstrate the circularity and the environmental benefits of the solutions tested;
To consider the co-design of learning resources together with local and regional educational organisations for current and future generations of employees;

Preelimnary conclusions – tbc.

Hydrothermal wet oxidation of wind turbine blades is a reasonably new technique whose main objective is to reduce solid waste. This group of waste, made with composite containing plastics, are currently regarded as unrecyclable. During wet oxidation, the wind turbine blade is degraded in water under subcritical conditions of temperature (150-320°C) and pressure (20-150 bar). It is assumed that it is possible to produce a narrow group of chemical compounds such as alcohols or alkanes $(C_{12}-C_{21})$, aldehydes $(C_{6}-C_{16})$, ketones $(C_{6}-C_{19})$, diketones $(C_{6}-C_{16})$ and volatile fatty acids $(C_{6}-C_{20})$.

ACKNOWLEDGMENTS

This work has been prepared within the frame of the project "Oxidative liquefaction of plastic waste. Experimental research with multidimensional data analysis using chemometric methods" financed by the National Science Centre, Poland (registration number 2021/41/B/ST8/01770).

Thank you! swerle@polsl.pl

