Sustainable exploitation of biogas plant digestate within circular economy: high quality organic fertilizer production

<u>V.Proskynitopoulou^{1,2}</u>, S. Lorentzou¹, K. Plakas¹, R. Yaman³, B. Herbert⁴, Z.L. Ye⁵, F.J. Rubio⁶, P. Kougias⁷, A. Zouboulis², K.D. Panopoulos¹ ¹Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas ²Department of Chemistry, Aristotle University of Thessaloniki ³Leap Micro AD Ltd ⁴Stopford Energy and Environment ⁵Institute of Urban Environment - Chinese Academy of Sciences, ⁶IHE Delft Institute for Water Education ⁷Hellenic Agricultural Organisation- DEMETER, Soil and Water Resources Institute

CONTENTS

01 INTRODUCTION 02 **METHODOLOGY** 03 **RESULTS** 04 CONCLUSIONS 05 **ACKNOWLEDGEMENTS**

Digestate as a fertilizer

- Circular economy
- Waste reuse
- Anaerobic digestion: digestate as a by product
 - Nutrient rich
 - Mineral fertilizer replacement
 - Cost reduction
 - Eco friendly

Digestate issues

Composition

Feed depended

Nutrients

High concentrations Eutrophication

Volume

Treatment & storage

Hazards

Pathogens Pharmaceuticals

Common AD feed

Food waste

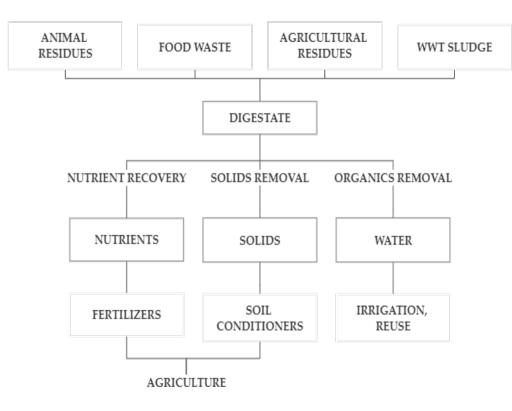
Low solid content. High nitrogen concentration Impurities: Plastics

WWT Sludge

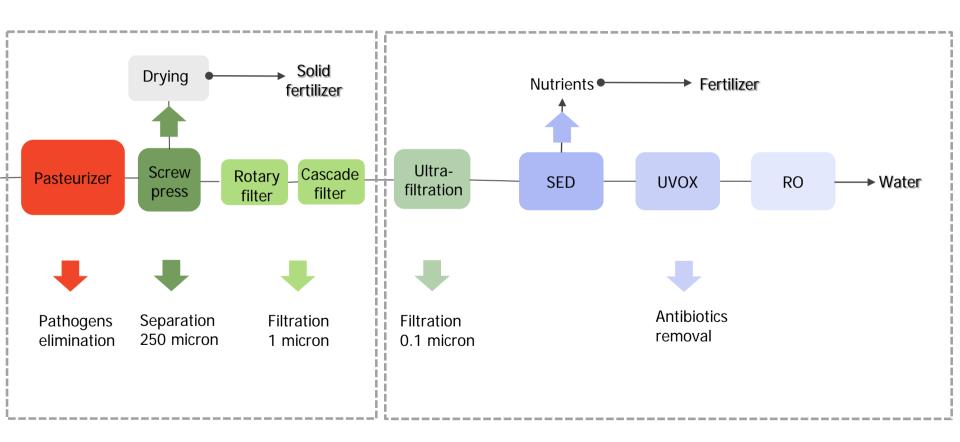
Low solids content Impurities: Antibiotics, PCBs, PAH

Animal residues

Very low solids content High nitrogen concentration Impurities: Antibiotics, heavy metals



Agricultural residues

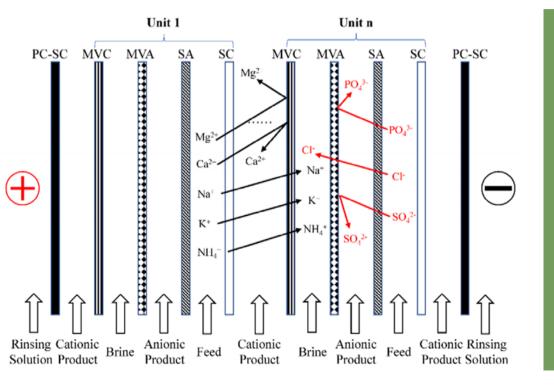

High solids content Impurities: Pesticides, herbicides

Solutions

- Reduce digestate volume
- Recover nutrients, fibre and water
- Production of high quality fertilizers
- Elimination of pathogens
- Pharmaceuticals removal

Process scheme

Pretreatment


Main process

Nutrient Recovery Selective Electrodialysis, SED

Feed: Liquid fraction (<0.1µm)

Products:
1. Fraction free of ions
2. Cationic fraction: Ca²⁺, Mg²⁺
3. Anionic fraction: PO₄³⁻, SO₄²⁻
4. Monovalent ions fraction: K⁺, NH₄⁺, Na⁺, Cl⁻

Biogas plants

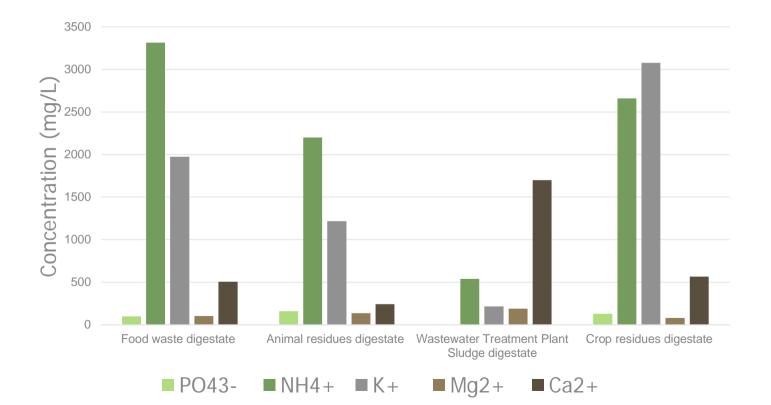
Food waste

Supermarket and kitchen food waste, kitchen and canteen catering food waste, waste from markets

Animal residues

Animal faeces, urine, manure and corn silage

20-25 % cereal silage; 75-80% agro-industrial byproducts (fruit and vegetable processing, olive pomace, manure) **Agricultural** waste


Sludges from treatment of urban wastewater and Farmyard waste mixed with urban waste in the sewer collection network WWT Sludge

Digestate characterization

Digestate	рН -	TN gN/kg DM	TNK gNH₄/k g DM	TP gPO₄/k g DM	K g/kg DM	COD g/kg DM	DM %
Food waste digestate	8.8	145	145	11	113	1425	5.7
Animal residues digestate	8.1	125	125	27	102	1075	3.4
Wastewater Treatment Plant Sludge digestate	7.6	51	51	17	18	918	4.0
Crop residues digestate	8.0	117	116	8	118	774	7.9

Nutrient ions' availability

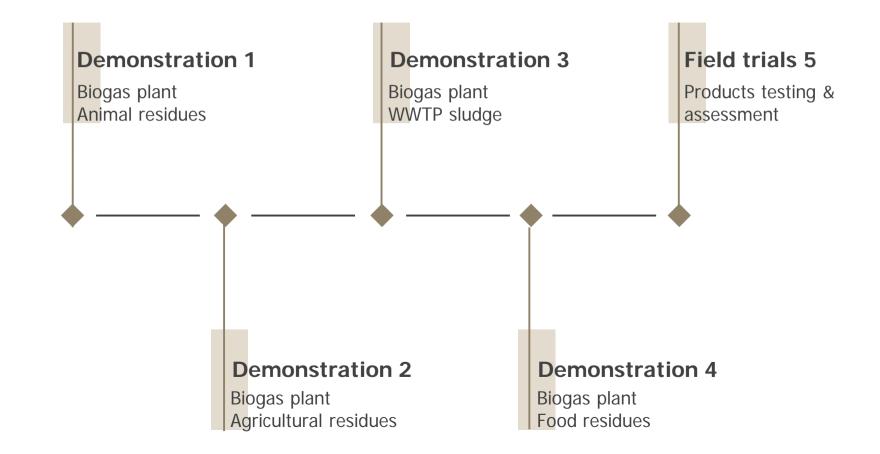
Key assumptions

- Percentage of water loss during pasteurization (2%).
- Moisture content of recovered solids (70%).
- Percentage of ammonium loss during pasteurization (43%).
- 100 % recovery of nutrient ions during SED.
- 50% water recovery during UF RO systems.

Products recovery

		Recovered	Total Nitrogen in	Nutrients recovery with SED					Water
Digestate	wet fibre (kg)	the west	PO4 ³⁻ (kg)	NH₄⁺(kg)	K⁺(kg)	Ca ²⁺ (kg)	Mg ²⁺ (kg)	recovery (%)	
Animal residues digestate	1000	123	0.27	0.04	0.99	0.81	0.22	0.11	42.9
Food waste digestate	1000	164	0.27	0.05	2.28	1.46	0.07	1.46	36.4
Urban wastewater Sludges digestate	1000	128	0.22	0.007	0.35	0.15	0.25	0.15	39.7
Crop residues digestate	1000	263	1.4	0.07	1.36	2.48	0.17	0.02	35.9

Results


- Higher solid recovery was achieved in the case of digestate with agricultural residues origin.
- Lower solid recovery in the case of animal residues digestate.
- Solid fraction from agricultural waste digestate has higher nitrogen content.
- Higher NH₄⁺ recovery with SED treatment in the case of food waste digestate.
- **Phosphorus** is predominant mostly in the **solid fraction** indicating its recovery in the liquid fraction would be lower than the other ions.
- **Potassium recovery** is higher in the case of **agricultural residues** digestate.

Results

- The proposed technology seems very promising in terms of treating diverse digestate and producing a variation of valuable products.
- Every fraction of digestate is processed and utilized with respect to circular economy and environmentally friendly manner, through the enhancement of circular resource management and of sustainable agricultural practices.
- Key for reducing the overall cost, complexity and footprint of small biogas plants, reducing the risks and challenges associated with digestate, creating new revenue streams and improving their economic viability.

Future work

This work is conducted within the scope of the Horizon 2020 EU funded project NOMAD (GA 863000).

Horizon2020 **European Union Funding** for Research & Innovation

THANK YOU

Does anyone have any questions?

Contact: <u>verapros@certh.gr</u> panopoulos@certh.gr

9th International Conference on Sustainable Solid Waste Management Corfu, Greece, 15 - 18 JUNE 2022