Potential of anaerobic co-fermentation in WWTP: A review

Sergi Astals, Noemí Pérez-Esteban, Sergi Vinardell, Carme Vidal-Antich, Sergi Peña-Picola, Miriam Peces, Joan Dosta

Environmental Biotechnology Research Group, Faculty of Chemistry, University of Barcelona, 08028, Spain

Introduction

Anaerobic fermentation (not AD) is a key biotechnology for biorefinery applications

Why co-fermentation?

Primary and WAS have a relatively low fermentation yield.

UNIVERSITAT DE BARCELONA

Highest fermentation yields have been

Support biological nutrient removal/recovery

obtained at pH ~7 and 35 °C.

- Mixing ratio between main substrates have an impact on fermentation yield and profile
- Operational conditions (OLR, HRT, T, pH) need to maximise fermentation yield and limit methanogens proliferation.
- More research is needed from the continuous reactors operation.

CO_2 PT Wastewater Primary Secondary Anoxic Aerobic settler settler Thickener Co-substrate Biogas VFA-rich stream Anaerobio Centrifuge Centrifuge Co-fermentation digestion Solid fertilizer

Produce polyhydroxyalkanoates

Further discussion

Science of the Total Environment 813 (2022) 152498

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

Potential of anaerobic co-fermentation in wastewater treatments plants: A review

Science of otal Environme

N. Perez-Esteban^a, S. Vinardell^a, C. Vidal-Antich^{a,b}, S. Peña-Picola^a, J.M. Chimenos^d, M. Peces^c, J. Dosta^{a,b}, S. Astals^{a,*}

Ministry of Science, Innovation and Universities PID2019-111284RB-I00 RYC-2017-22372

