

POWER-TO-GAS CONCEPT THROUGH BIOLOGICAL CO, HYDROGENATION PROCESS

K. Kontogiannopoulos¹, A. Antoniadis², C. Roumpos³, A. Zouboulis⁴, P.G. Kougias^{1,*}

Electricity cannot be stored economically and must be consumed the same second it is produced.

Supply and demand must always be precisely balanced in the electricity grid, and overload must be avoided.

In cases of excess electricity supply, generating companies must pay the managers of the grid to take their electricity (negative prices).

Power-to-gas technologies can provide storage solutions for this excess energy.

Biological hydrogenation of CO₂ into biomethane.

Mild temperature and ambient pressure | Low energy cost.

Various exogenous CO₂ sources, such as biogas (CO₂ content ~35-50%) or exhaust/flue gas (5-17% CO₂).

Exemplary method for seasonal on-site energy storage.

 H_2 is coupled with carbon dioxide from power plants or CO_2 intensive industries

CO₂ capture

(kg CO₂/m³ reactor)

0.65

1.30

2.59

3.89

7.78

15.56

(h)

12

0.5

The methane produced is 95% pure and directly compatible with CNG, feeding into an expanding transport fuel market.

Biomethanisation is carried out by naturally occurring mixed cultures of hydrogenotrophic methanogens, which can be adapted to work with non-refined sources of CO_2 .

Innovation

The CH₄ produced can be directly injected into the gas grid (after only minimal cleaning), allowing distribution and use for power generation and direct heat applications.

Surplus off-peak electricity can be exploited for electrolytically-produced hydrogen

ACKNOWLEDGMENT

The project "LIFE CO₂toCH₄ - Demonstration of a mobile unit for hybrid energy storage based on CO₂ capture and renewable energy sources" (LIFE20 CCM/GR/001642) is co-funded by LIFE, the EU's financial instrument supporting environmental, nature conservation and climate action projects throughout the EU.

REFERENCES

- 1. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H. and Kougias, P.G., 2018. Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), pp.4<u>52-466.</u>
- 2. Sieborg, M.U., Jensen, M.B., Jensen, B. and Kofoed, M.V.W., 2021. Effect of minimizing carrier irrigation on H₂ conversion in trickle bed reactors during ex situ biomethanation. Bioresource
- Technology Reports, 16, p.100876. 3.Tsapekos, P., Treu, L., Campanaro, S., Centurion, V.B., Zhu, X., Peprah, M., Zhang, Z., Kougias, P.G. and Angelidaki, I., 2021. Pilot-scale biomethanation in a trickle bed reactor: Process performance and microbiome functional reconstruction. Energy Conversion and Management, 244, p.114491.