The effect of alkaline/hydrogen peroxide pretreatment on hydrogen and methane production from biomasses of different origin: the case of willow sawdust and date palm fibers

M. Alexandropoulou¹, I. Ben Atitallah^{2,3}, I. Ntaikou¹, G. Antonopoulou^{1,*}, T. Mechichi³, G. Lyberatos^{1,4}

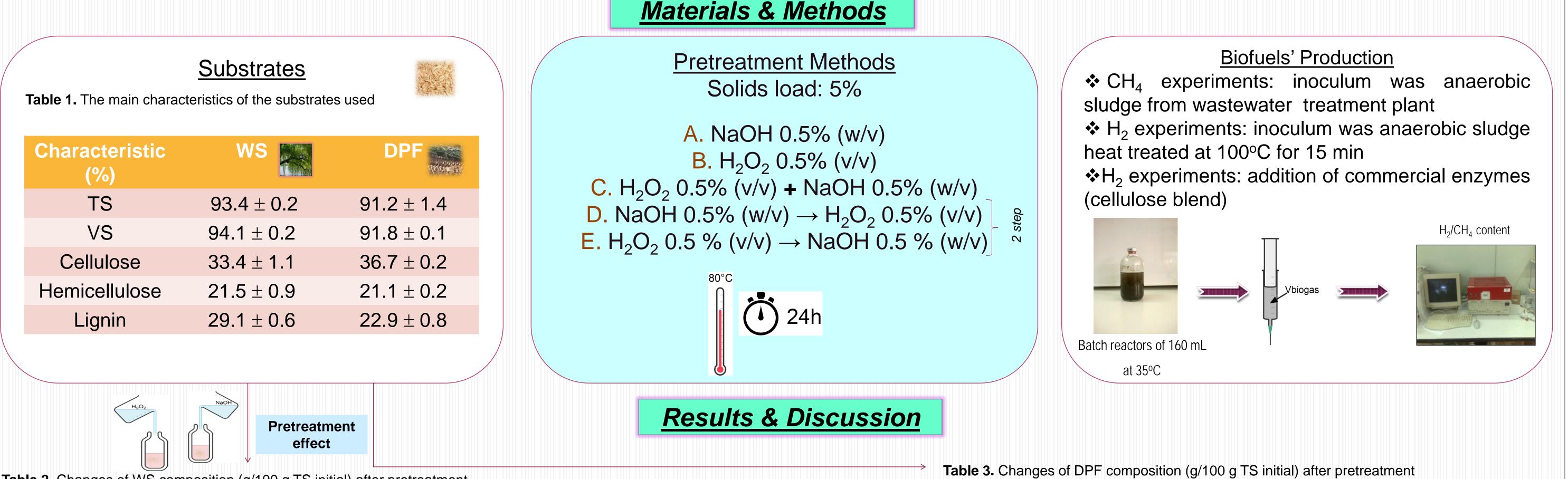
¹Institute of Chemical Engineering Sciences, 11 Stadiou st., Platani, Patras, GR 26504, Greece. ²Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia.

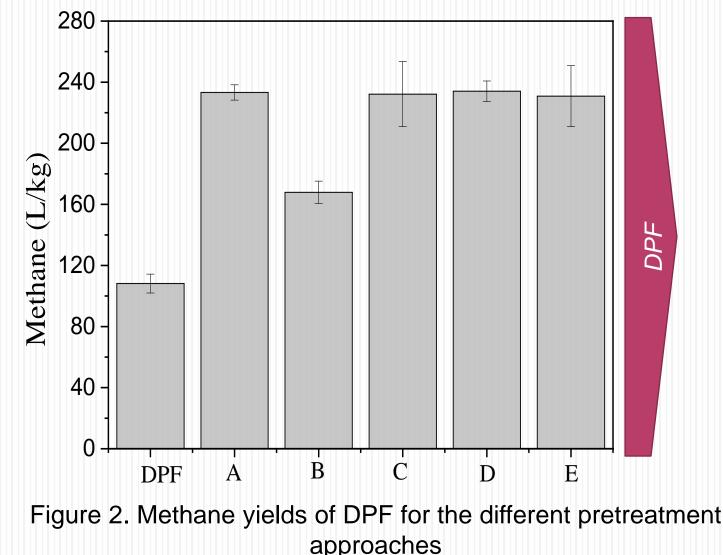
³Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia.

⁴School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece geogant@chemeng.upatras.gr

Introduction

One of the major challenges of nowadays is to reduce the world's dependence of fossil fuels. In this context, several approaches have been considered, including the production of gaseous biofuels such as hydrogen and methane. Gaseous biofuels produce lower pollutant emissions while they can be produced from inexhaustible sources such as lignocellulosic biomass. Pretreatment of lignocellulosic biomass is a quite important step before its use as a substrate for anaerobic bioprocesses as it intrudes to its structure leading to enhanced biofuels' yields. The present study focuses on the use of two different agricultural wastes/ lignocellulosic substrates (willow sawdust-WS and date palm fibers-DPF) as substrates for methane and hydrogen production. Prior to use for biofuels' production, the substrates were pretreated using dilute solutions of sodium hydroxide, hydrogen peroxide or combinations of them.




Table 2. Changes of WS composition (g/100 g TS initial) after pretreatment

Die 2. Changes of WS C	composition (g/100 g 1	S milial) after pretrea	lment	.						
WS					s reduced to 21.3%, 18.9%, when WS was subjected to		DPF			
Pretreatment Cellulose (%) Hemicellulose (%) Lignin (%)			pretreatment approaches A,C,D and E		Pretreatment	Cellulose (%) Hemicellulose (%)	Lignin (%)		
A	31.37 ± 0.20	16.93 ± 0.10	, , , ,	respectively Lignin removal	was highest (38.3%) for	Α	22.89 ± 0.14	12.69 ± 0.21	13.59 ± 0.65	
B	34.43 ± 0.35	20.38 ± 0.24	29.76 ± 0.06	A,C and E led to low	ach D, while approaches ver lignin reduction (25.5%,	В	29.48 ± 0.16	10.12 ± 0.21	19.40 ± 0.01	
С	30.85 ± 0.15	17.44 ± 0.23	20.97 ± 0.04	27.9% and 28.4%, re ◆Approach A for DPF	resulted to a high lignin	С	21.25 ± 0.18	7.89 ± 0.23	12.94 ± 0.30	
D	28.40 ± 0.20	16.11 ± 0.25	17.94 ± 0.09 removal (40.54 ± 1.0		(2%) and to the lowest ellulose (40.02 \pm 0.39%)	D	17.21 ± 0.17	4.51 ± 0.19	10.14 ± 0.02	
E	31.62 ± 0.14	16.89 ± 0.45	20.85 ± 0.09	Approach D strongly structure. (53.05 ± 0.36	y affected lignocellulosic % decrease of cellulose, se of hemicellulose and	E	20.93 ± 0.66	6.87 ± 0.30	13.12 ± 0.05	
Biofu 240 240 160 120 40 40	Lels' production CH ₄	INSI INSI	The maximum methequal to 219.03 \pm when WS was pretreated by the NaOH solution (A Also, the yield was LCH ₄ /kg in the case pretreatment approad Low yield was observed of H ₂ O ₂ (173.22 \pm 6.0	3.74 L CH ₄ /kg eated only with A). e of two-stage ches (D and E).	was pretreated wi	ith NaOH (A) or AOH/H_2O_2 (C) or treatments (D and $A = 129 LH_2/kg$) yield was observ (22.46 ± 0.90 I lar to the yield	• with 140 - • with 120 - nd E) (\$\vert 120 - (\$\vert 100			
0 WS A	B C D	\mathbf{r}	The methane yield was 85.48 ± 8.49 L C		No hydrogen untreated WS (with		0 -	WS WS (SSF) A B C	D E	
Figure 1 Methane vie	elds of WS for the differe	ont pretreatment					Figure 3	. Hydrogen yields of WS for the	different pretreatment	

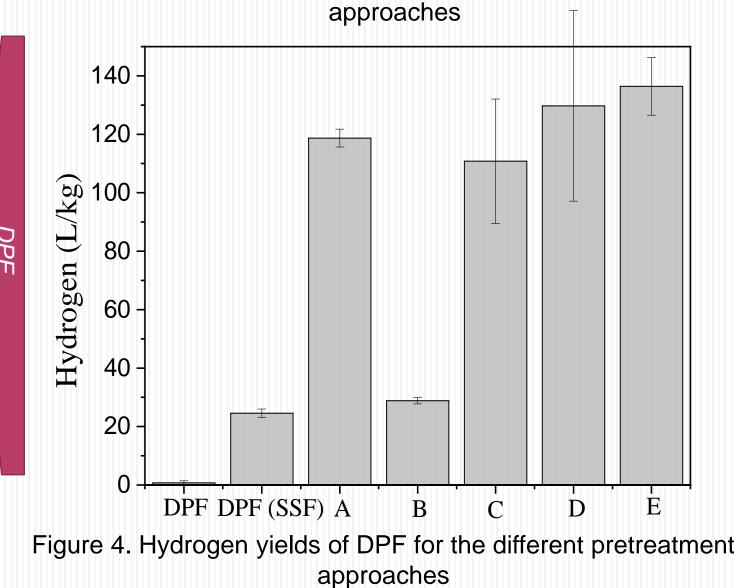

Figure 1. Methane yields of WS for the different pretreatment

Figure 3. Hydrogen yields of WS for the different pretreatment

approaches

The maximum hydrogen yield was The maximum methane yield was 140 achieved when DPF was subjected to achieved when DPF was subjected 120 the two-stage pretreatment E (H_2O_2) first, to pretreatment D. This yield was 001 (g) followed by NaOH) and it was equal to equal to $247.04 \pm 34.00 \text{ L CH}_4/\text{kg}$. 136.38 \pm 9.84 L H₂/kg, which was similar U Hydrogen to the pretreatments A, C and D. lowest yield emerged when The 60 DPF was treated only with the Low hydrogen yields were observed hydrogen peroxide solution and it when DPF was pretreated with H_2O_2 was equal to 178.33 ± 8.09 L 20 being the same with the yield of CH₄/kg (similar with the respective untreated DPF in SSF WS yield)

Conclusions

In the present study two different agricultural wastes/lignocellulosic substrates (WS and DPF) were used as substrates for methane and hydrogen production. Prior to use for biofuels' production, the substrates were pretreated using dilute solutions of sodium hydroxide, hydrogen peroxide or combinations of them. The experimental results showed that almost all pretreatment methods enhanced biofuels production comparing to the raw substrates and that the trends of the resulting yields were similar for the two/ substrates. Furthermore, it was observed that hydrogen peroxide addition solely did not really increase hydrogen yields.

We acknowledge financial support of this work by the project "Research infrastructure for Waste Valorization and Sustainable Management of Resources, INVALOR" (MIS 5002495) which is implemented under the "Action for the Strategic Development on the Research and Technological Sector", funded by the Operational Programme **Acknowledgements** "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).