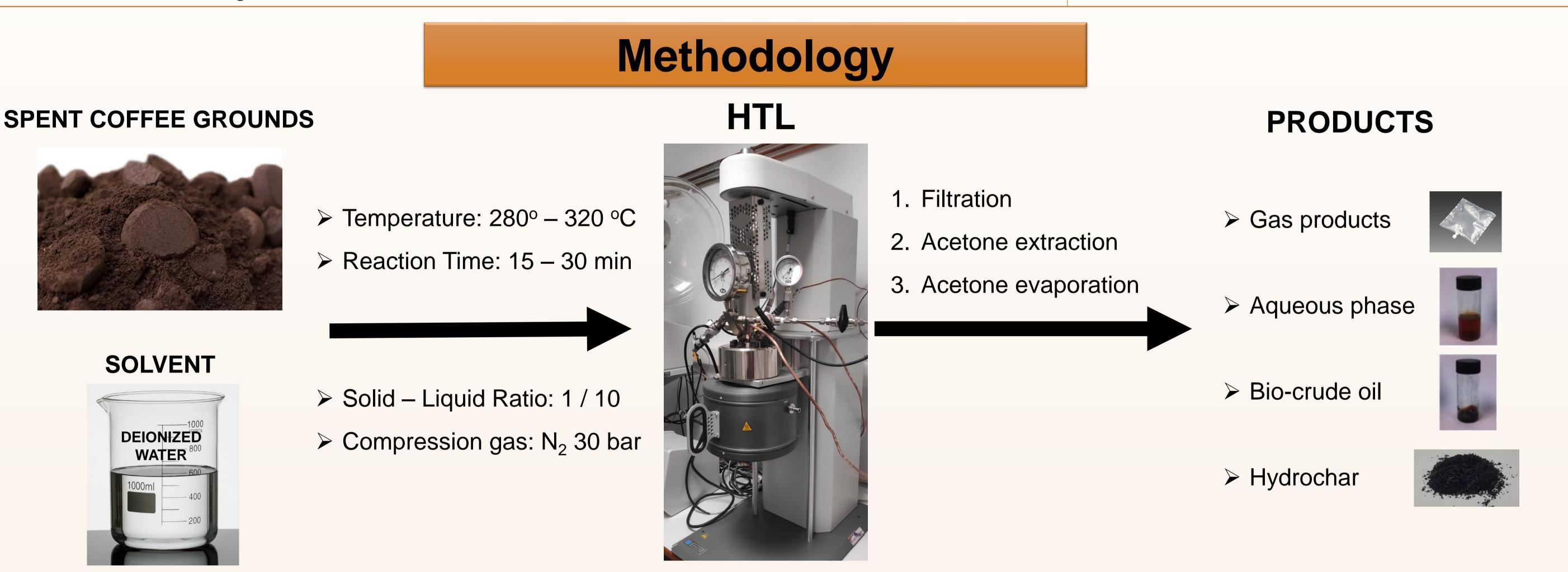
Hydrothermal liquefaction of spent coffee grounds targeting liquid biofuel intermediates

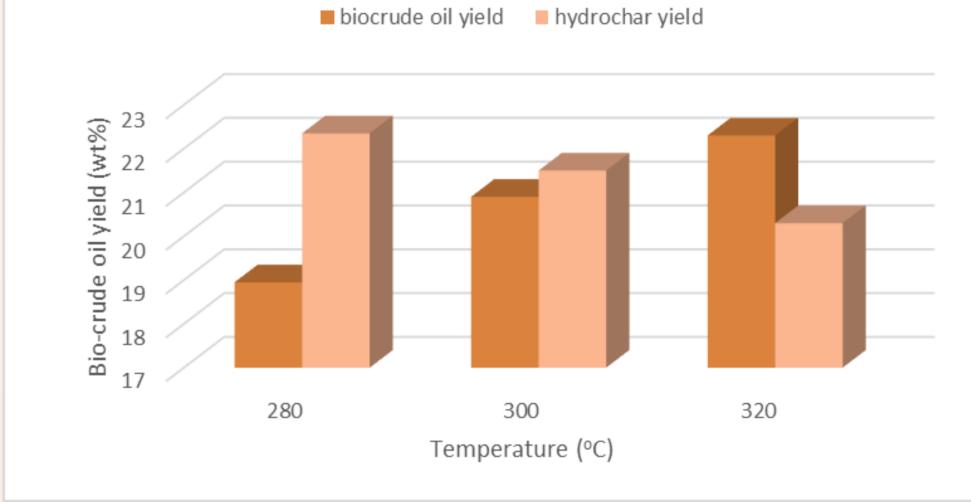
D. Liakos^{1,2}, K. Triantafyllidis², L. Chrysikou¹, S. Bezergianni¹

¹Center for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute (CPERI), Thessaloniki, Greece ²Aristotle University of Thessaloniki (AUTH) Greece, Department of Chemistry


Introduction					Objectives
<image/>		Cellulose Hemicellulose Lignin	Units wt% wt% wt%	Wheat Straw 12.10 33.53 31.81	 ➤ Conversion: spent coffee grounds → bio-crude ➤ Investigation of HTL main parameters:
	LightWt/001.01AshWt%1.94ProteinsWt%15.24	TemperatureResidence Time			

Coffee is one of the most consumed goods (10 MT annually in last 5 years)

 \succ Coffee \rightarrow Lignocellulosic biomass \rightarrow Potential sustainable residual feedstock


Comparison:

Raw – Pretreated spent coffee grounds

Results & Discussion

Effect of temperature on biocrude oil and solid yield

Gas molecule	Concentration (v/v%)		
Carbon dioxide (CO₂)	91.0 – 93.0		
Hydrocarbons with 6 or more carbon atoms (C_6^+)	0.1 – 0.3		
Ethane (C ₂ H ₆)	0 – 0.12		
Methane (CH ₄)	6.5 - 7.3		
Hydrogen (H)	0 – 0.5		

Results from pretreated spent coffee grounds after lipid removal

Biocrude oil yield 20 – 23 wt% and solid yield 20 – 22 wt%

Lipid extraction leads to:

1. lower oil yield 2. higher optimal temperature

Temperature Increase:

- Increased oil yield (from 19 to 23 wt%)
- Decreased solid yield (from 22.3 to 20.3 wt%)

Residence time had minor effect in biocrude oil yield

GC-FID analysis of gas products:

- Main gas product is CO₂
- Except for CO₂ some light hydrocarbons are also traced

Methane (Main HC molecule) – Ethane – C_6^+

Acknowledgement

Conclusions

- 1) Spent coffee grounds can be used as feedstock for oil production
- 2) Optimal temperature and time: 320 °C and 15 min
- 3) Gas product contains CO_2 and some light organic molecules
- 4) Next step: raw spent coffee grounds HTL investigation

The authors wish to express their appreciation and for the financial support provided by the European Commission and the Greek Government for the project Brew2Bio (RESEARCH – CREATE – INNOVATE)

- A. Dimitriadis, S. Bezergianni (2017), «Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review», Renewable and Sustainable Energy reviews 68, 113-125
- 2. Agnieszka Brandt, John Grasvik, Jason Hallett, Tom Welton (2013), «Deconstruction of lignocellulosic biomass with ionic liquids». Green Chemistry 15(3), 550-583

