

# Environmental performance of wastes incorporation in concrete mixtures

<u>Helena Monteiro\*</u>, Bruna Moura, Joana Almeida

Low Carbon & Resource Efficiency, R&Di, Instituto de Soldadura e Qualidade, R. do Mirante 258, 4415-491 Grijó, Portugal

\*himonteiro@isq.pt

INTRODUCTION

The building sector contributes to 39% of annual



global CO<sub>2</sub> emissions

## Concrete production is estimated in 12billion ton/year



Resource efficiency & circular economy models

#### EU Commission set a decrease of 90% of CO<sub>2</sub> until 2050

Reformulation of building materials and products



Wastes as secondary construction materials to replace

synthesize the existing knowledge of waste incorporation in concrete mixes.

Potential **Benefits** 

Current Challenges

## METHODOLOGY

**Concrete & waste mixtures** in distinct materials/ processes/ components/ applications.

Goal and Scope definition

Results Interpretation and Findings

Life Cycle Life Cycle Inventory (LCI) Assessment ISO 14040, ISO 14044

cement  $\rightarrow$  channel by-products back into the value chain  $\gamma$ 

Life Cycle Impact Assessment (LCIA)

### **RESULTS & DISCUSSION**

Trends identified in LCA studies found in the literature:



#### Foamed concrete mixtures

Granite waste to replace fine sand showed a reduction of the impacts on: ADP (16%), GWP (32%), AP (13%), EP (58%), and OP (21%).



#### Concrete Mixtures

Increasing costs in 25%. Emissions of CO2, NOx, CO and SO2 can be reduced by 10%, 38%, 2.5% and 43%, respectively.



**Source:** https://cen.acs.org/materials/inorganicchemistry/Alternative-materials-shrink-concretes-giant/98/i45



Mixtures with recycled coarse aggregates showed an improved environmental performance than natural coarse aggregates



#### **Pavement Materials**

Concrete Mixtures

Plastic aggregate content maintains mechanical properties and alleviates GWP.



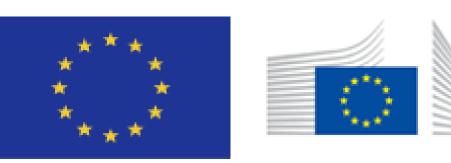
#### **Roller Compacted Concrete Pavement**

Incorporating 15% of ceramic waste aggregate and 8% of coal waste powder mitigate greenhouses gases by 10%, reducing GWP by 9%.



#### Alkali-activated Concrete

Alkali-activated concretes instead of OPC concrete reduces GWP in 64% - 70%, AP in 23% -35%, and TEP in 53% - 60%.


## CONCLUSIONS

Environmental assessments, oriented to waste incorporation in concrete, can support further developments and promote circular economy models while providing a reliable strategy to compare materials and products. These findings are valuable for stakeholders to evaluate the costeffectiveness of alternative green concrete materials in their construction projects.

**Note:** ADP – Abiotic Depletion, AP - Acidification, EP -Eutrophication, OP – Photochemical Oxidation, GWP – Global Warming, TEP – Terrestrial Eutrophication

## ACKNOWLEDGMENTS

This research has received funding from the European Community's H2020 Programme, under grant agreement Nr. 814632. Funding scheme: H2020-NMBP-HUBS-2018.



European Commission



