Environmental hotspots analysis of the second-generation polylactic acid (PLA) based on wheat straw.

Ricardo Rebolledo-Leiva¹, Sofia-Maria Ioannidou², Dimitris Ladakis², Apostolis Koutinas², María Teresa Moreira³, Sara González-García¹

¹CRETUS, Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
²Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece

Keywords: Life Cycle Assessment, Biorefinery, Biomass valorisation, Circular bioeconomy.

Presenting author email: maité.moreira@usc.es

1. Introduction

Switching from petrochemicals to bio-based products is an urgent prerequisite to reduce the consequences of the climate crisis on the planet. Plastic pollution is one of the major threats, and its production is expected to continue to grow to meet the increasing demand for food worldwide. Bioplastics appear as a renewable source with similar characteristics to their fossil counterparts but avoiding their depletion. Of these, polylactic acid (PLA) is one of the most widely used biopolymers, due to its mechanical properties and renewable origin to produce compostable bio-based plastic for food packaging. This work aims to estimate the potential environmental feasibility of a second generation (2G) PLA production from wheat straw. Thus, it is intended to determine those factors that may restrict the environmental feasibility of the biorefinery process as additional criteria in the development of the conceptual design. In addition, the identification of environmental hotspots will allow reducing the environmental burdens of these stages by proposing improvement plans to achieve a sustainable biorefinery platform.

2. Materials and methods

The attributional Life Cycle Assessment (LCA) methodology, through a cradle-to-gate approach, was performed following the ISO 14040-14044 guidelines (ISO, 2006a; 2006b). The wheat cultivation stage is carried out in Apulia, Italy, and an economic allocation was used to distribute the environmental burdens between wheat grain and straw. Regarding the process modelling, an annual production capacity of 40,000 tons of PLA was considered for the platform. The biorefinery plant consists of different stages such as pre-treatment of straw, lactic acid production and PLA production. In the pre-treatment section, the straw is milled and sent to a thermal hydrolysis for hemicellulose fractionation. Thermal hydrolysis is performed with high-pressure (19 bar) at 210°C and considering a biomass-to-stream ratio of 1:2 (Al-Zuhair et al., 2013). The solid and liquid fractions are separated by filtration. The solid stream proceeds to enzymatic hydrolysis, which is carried out at 50°C using 20 mg·g⁻¹ of cellulose of Cellic® CTeC3 cellulase (Novozymes, Bagsvadr, Denmark) at 20% wt of total solids loading (Lopes et al., 2019). The sugar solution obtained is sent to the lactic acid (LA) production stage. The LA and PLA production processes were performed following the work of Ioannidou et al. (2022). Impact categories such as Global Warming (GW - kg CO₂ eq), Freshwater Eutrophication (FE - kg P eq), Freshwater Eco-toxicity (FET - kg 1,4-DCB), Human carcinogenic toxicity (HCT- kg 1,4-DCB) and Fossil Resource Scarcity (FRS – kg oil eq) were evaluated. For this purpose, the ReCiPe v1.07 (H) impact method (Huijbregts et al., 2017) and Simappro® 9.4 software (Pré Sustainability, 2021) were used. The environmental burdens evaluated were expressed in terms of 1 kg of PLA produced (i.e., functional unit).

3. Results and discussion

The environmental profile of the 2G PLA was 1.42 kg CO₂eq in the GW category, 0.90 g P eq in FE, 183.39 g 1,4-DCB in FET, 68.55 g 1,4-DCB in HCT, and 0.41 kg oil eq. Results show that the lactic acid production (i.e., prepolymer production) was the main contributor to the environmental burdens of the biorefinery (see Fig. 1a). This is due to the pre-treatment of wheat straw, the fermentation process, or the downstream process (the recovery of pure L-lactic acid), depending on the impact category evaluated (see Fig. 1b). Focusing on the GW profile, 2G PLA achieves better performance than first-generation PL. For example, from the Ecoinvent® 3.8v database (Wernet et al., 2016), PLA derived from maize/com-grain implies GHG emissions with a range between 2.83 and 3.05 kg CO₂eq per kg of product.
4. Conclusions

Process modelling of prospective biorefinery systems allow estimating the environmental feasibility at an early stage of design and development. In this way, the promotion of the new valorisation pathway could be reached addressing those processes that represent the environmental hotspots in the promotion of a bioeconomy model. In the production of the second-generation PLA, the LA production stage represents the main contributor of the biorefinery platform and the pre-treatment of wheat straw as source of fermentable sugars and the downstream process were the main responsible of these outcomes.

Acknowledgments

This research is supported by the following projects: Enhancing diversity in Mediterranean cereal farming systems (CerealMed) funded by PRIMA Programme and FEDER/Ministry of Science and Innovation– Spanish National Research Agency (PCI2020-111978); Transition to sustainable agri-food sector bundling life cycle assessment and ecosystem services approaches (ALISE) funded by the Spanish National Research Agency (TED2021-130309B-100); BIORECER (No 101060684) and STAR4BBS (No 101060588) projects both funded by the European Commission HORIZON-CL6-2021-ZEROPOLLUTION-01. Rebolledo-Leiva R., Moreira MT, and González-García S. belong to the Galician Competitive Research Group (GRC ED431C-2021/37) and to the Cross-disciplinary Research in Environmental Technologies (CRETUS Research Center, ED431E 2018/01).

References