Iceland Liechtenstein Norway grants

10th International Conference on Sustainable Solid Waste Management, 21-24 June 2023, Chania, Greece

Bioplastics - a new threat or industrial synthesis?

<u>Renata Tomczak-Wandzel</u> Beata Szatkowska

What do we know about bioplastics?

Few points helping to understand the topic:

1

The bioplastics can be made from either fossil (petrochemical) or biological (vegetable) resources,

The degradation of biodegradable plastics over a time differs, they should not be freely released into the environment in an uncontrolled manner. Not all biodegradable plastics are compostable,

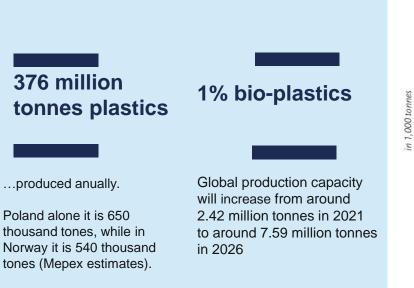
A problem with biodegradable and compostable plastics is the lack of clarity about the standards for their biodegradability,

Bio-based plastics are plastic that are wholly or partly renewable. Biobased plastics are not always biodegradable!

Bioplastics

bio-based – is (at least partly) derived from biomass (e.g. from corn, sugarcane, trees, algae etc.)

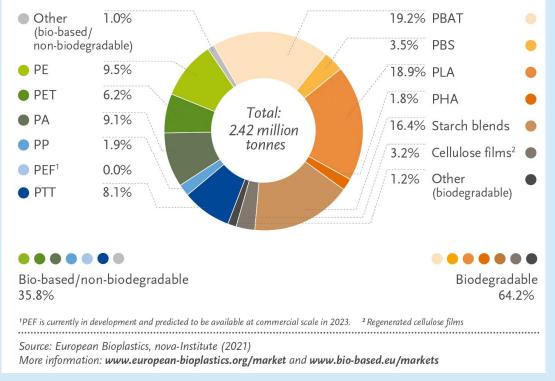
biodegradable – implies that microorganisms that are present in the environment can convert the material into natural substances (i.e. water, carbon dioxide or compost) without polluting the environment Types of polymers in terms of biodegradation and the sources of their origin


Biodegradable polymers made of **renewable resources** (so-called "double green"): PLA, PHA, TPS, starch blends Non-biodegradable polymers produced from renewable resources: Bio-PE, Bio-PP, Bio-PET

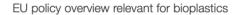
Biodegradable and **petrochemical** polymers: PBAT, PCL, PBS **Non-biodegradable** and **petrochemical** polymers: (PE, PP, PET, PS, PVC)

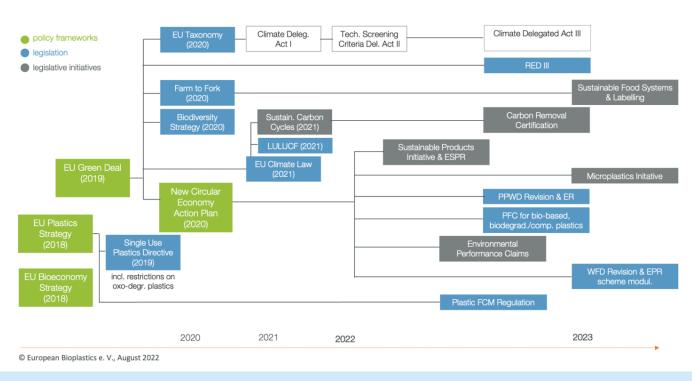
European Bioplastics Association

Global production capacities of bioplastics



Source: European Bioplastics, nova-Institute (2021)


More information: www.european-bioplastics.org/market and www.bio-based.eu/markets


Global production capacities of bioplastics

2021 - by material type

EU policy for bioplastics

DIGEST PLAST - project in cooperation between Poland and Norway under EEA and Norway Grants

Pre- treatment methods of biodegradable plastics prior anaerobic digestion

Biogas potential of anaerobic digestion with biodegradable plastics – AMPTS test

Impact of basic process parameters on conversion of biodegradable plastics to microplastics – field study at utilisation plant Szadółki Poland

Digestate quality properties and microplastics presence evaluation

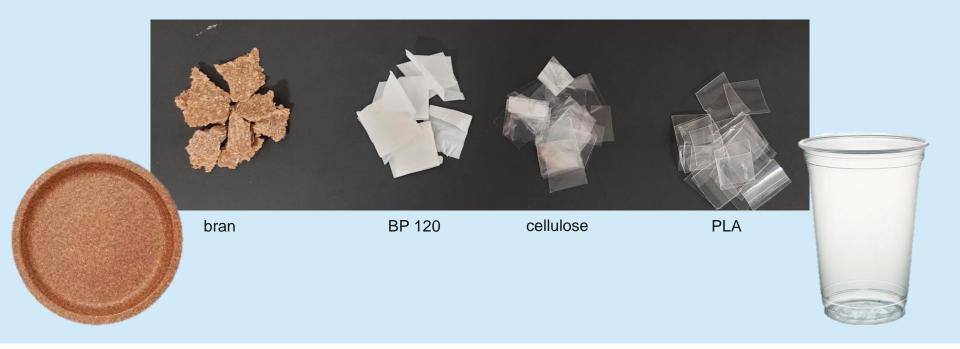
Analysed bioplastics

PLA	Polylactic acid
РНА	Polyhydroxyalkanoates
Cellulose	Polysaccharide
Bran	Hard outer layers of cereal grain
Bioplast 120	Bio-plastic of bacterial origin
PHBV	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PHBH-HF	Poly(3-Hydroxyhexanoate with 3-Hydroxybutyrate) - hemp fibre

Pre-treatment methods of biodegradable plastics prior anaerobic digestion

2 methods were tested to verify if increase in the biogas production rate of the organic fraction of municipal waste (OFMW) with bioplastics is possible.

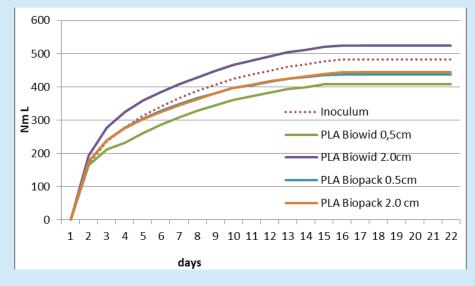
Thermal pre-treatment – 55°C and 90°C (3h, and 24h) (4 different time/temperature conditions).


Mechanical pre-treatment – 0.5 cm and 2.0 cm cut

AMPTS – Automatic Methane Potential Test System

Pre-treatment methods

of biodegradable plastics prior anaerobic digestion

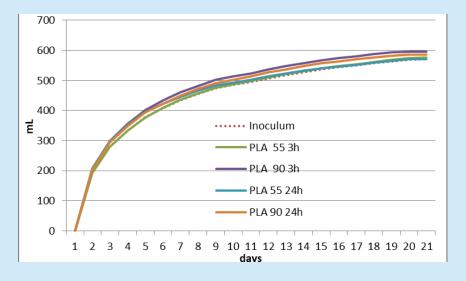


Anaerobic digestion of PLA

Mechanically pre-treated prior anaerobic digestion.



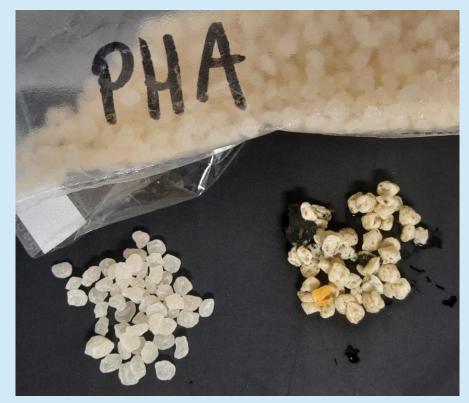
PLA cups (biowid, biopack) - size of 2cm and 0.5 cm


PLA after anaerobic digestion

aquateam

Anaerobic digestion of PLA

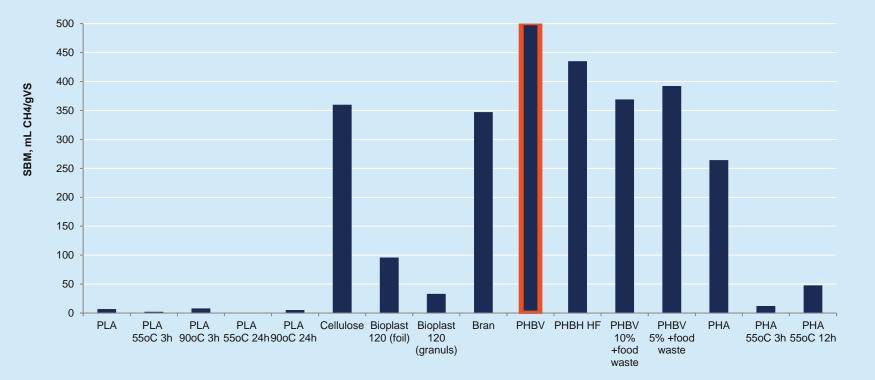
Thermal pre-treated prior anaerobic digestion.


• PLA Biowid cups, 55°C (3 h, 24h), 90°C (3h, 24h)

	SMP	
PLA 55 3h	2.2	
PLA 90 3h	8.1	
PLA 55 24h	0.4	
PLA 90 24h	5.3	

mL/gVS

Specific Methane Potential


PHA (polyhydroxyalkanoates)

aquateam COWI

After 26 days of anaerobic digestion

SBP (Specific Methane Potential) of bioplastics

Conclusions

- PLA (polylactic acid) and PHA (polyhydroxyalkanoates) are the main drivers of this growth in the field of biodegradable plastics.
- Bioplastics may have the same properties as ordinary plastic.
- There is a strong discrepancy between regulations at the national and EU level.
- There is lack and no clarity in policy related to bioplastics.

Main problems:

- lack of clarity about the standards for biodegradability of bioplastics
- lack of common terminologies and regulations

Project financed by funds from Norwegian Financial Mechanism 2014-2021 NOR/POLNOR/DIGEST-PLAST/0055/2019-00

Thank you for your attention

Aquateam COWI AS

Karvesvingen 2, 0579 Oslo, Norway E-mail: retw@aquateam.no www.aquateamcowi.no

