KU LEUVEN

Functional classification and material characterization of plastic packaging in Flemish land litter to support effective reduction policies

<u>Jo Van Caneghem*</u>, Jan Van Stockem+, Anneleen Verstegen* *KU Leuven – Department of Materials Engineering, Group T Leuven Campus *Public Waste Agency of Flanders (OVAM)

Problem statement

- Littering, in particular of plastics, is a nuisance
- Ocean plastics largely originate from land-based sources, including littering

Need for effective measures to reduce land littering of plastics

• Little to no systematic information available on the functional and material composition of <u>land</u> litter

Research objectives

 Functional classification + Material characterization of plastic packaging in land litter

Applied methodology

- Land litter sampling (OVAM), 2019 2021, covering all seasons
 - Public domain in Flanders divided in 10m*10m grid squares
 - Classified based on littering incidence and nuisance level
 - Selection of squares for statistical representative sampling
 - In selected squares: all litter collected

Applied methodology

8 fractions containing plastics

Beverage cups and lids

Other food packaging

Single-use rigid plastic food packaging

Single-use plastic food packaging film

Packaging films - Non-food

Other plastic packaging - Non-food

Plastic bottles up to 3 l

Plastic bags

Removal of nonplastic packaging

Plastic beverage cups and lids

Other plastic food packaging

Functional classification

8 fractions containing plastics

Plastic beverage cups and lids

Other **plastic** food packaging

Single-use rigid plastic food packaging

Single-use plastic food packaging film

Packaging films - Non-food

Other plastic packaging - Non-food

Plastic bottles up to 3 l

Plastic bags

Beverage packaging

Food packaging

Non-food packaging

Functional classification

Beverage packaging

Bottles

Bottle caps

Cups and lids

Beverage pouches

Food packaging

Films

Non-food packagingRigidFilmsBagsImage: Second secon

Materials characterization

Each classified item scanned with handheld NIR scanner

- PP, PET, PE, PS, PA, PLA, PVC and 'other' (identified polymers)
- Unidentified plastics (e.g., laminates)
- Plastic films with an aluminum barrier
- Black plastics
- XPS

Materials characterization

Each classified item scanned with handheld NIR scanner

- PP, PET, PE, PS, PA, PLA, PVC and 'other' (identified polymers)
- Unidentified plastics (e.g., laminates)
- Plastic films with an aluminum barrier
- Black plastics
- XPS

Each material fraction

- Weighed
- Number of items determined

Results functional classification

Results material characterization

■ PP ■ PET ■ PE ■ PS ■ XPS ■ PA ■ PLA ■ PVC ■ Other ■ Unidentified ■ Aluminum barrier ■ Black

Conclusions

- Deposit return system for PET bottles packaging litter
 - Reduction only 5% of total land litte
- · Packaging films: high 'likeliness-to-get-
 - Restrict use

- Mentality change: both wrt littering and packaging use
- Plastic packaging in collected litter: 3 mass% of plastic packaging selectively collected at the source
- 'Snapshot' of litter composition in public domain in Flanders → not necessarily representative for other regions

Thank you!

Jo Van Caneghem

KU Leuven – Faculty of Engineering Technology Department of Materials Engineering – Group T campus

jo.vancaneghem@kuleuven.be