

10th International Conference on **Sustainable Solid Waste Management**

LIFE Zero Waste Water: exploring the joint management of bio-waste and wastewater

M. Roldán¹, J. Bautista-Giménez¹, J.R. Vázquez², A. Seco¹, J. Ribes¹

¹ CALAGUA – Unidad Mixta UV-UPV, ETSE, Universitat de València, Spain.

Chemical Engineering

Water and Environmental Eng.

Urban wastewater can be fully treated anaerobically with AnMBR plants WWTPs can become WRRFs with net energy production

Current WWTP facilities by plant size and type of process (Spain)

Carbon foot-print of WWTP in the Region of Valencia

91% GHG emissions associated to energy consumption

Source: EPSAR (2016), Period 2010-2015

We need a shift towards more sustainable technologies

 Anaerobic treatment can be used in small WWTP (aerobic water treatment can be avoided)

BENEFITS:

IMPACT REDUCTION

- Low energy demand
- Low GHG emissions
- Low sludge productions

RECYCLING & VALORIZATION

- High quality water (ultra-filtered, pathogen free, nutrient rich effluent)
- Organic matter → Biogas / Biomethane
- Nutrients & compostable sludge

AnMBRs allow decentralisation, which facilitates recycling of water and nutrients.

AnMBR applied to low strenght UWW

First study at pilot plant scale located in Valencia (Spain) in 2008

Reaction volume

 2.2 m^3

2 membrane tanks

PURON®, KMS ultrafiltration 31 m² filtration area/module

Design flow-rate

 $25 \text{ m}^{3}/\text{d}$

Influent characteristics

Variable		Media ± SD*		
SST	(mg SS·I ⁻¹)	186 ± 61		
SSV	(mg SS·I ⁻¹)	150 ± 54		
DQO _T	(mg DQO·l ⁻¹)	388 ± 95		Low COD concentration
DQOs	(mg DQO·l ⁻¹)	79 ± 25		
AGV	(mg DQO·l ⁻¹)	11 ± 7		
S-SO ₄	(mg S·l-1)	99 ± 18	Si	gnificant sulfate concentration
N-NH ₄	(mg N·I ⁻¹)	27,0 ± 8,1		
P-PO ₄	(mg P·l ⁻¹)	2,7 ± 0,9		
Alk.	(mg CaCO ₃ ·l ⁻¹)	292,5 ± 37,2		

Grant CTM2008-06809-C02-01 and CTM2008-06809-C02-02 funded by the Spanish National Science Foundation (CICYT)

AnMBR applied to low strenght UWW

Case study of industrial prototype (Alcázar de San Juan WWTP) in 2014

3 membrane tanks 0.8 m³/tank (0.7 + 0.1)

PURON[®], KMS, Ultrafiltration (0.03 μm)

41 m² filtration area/module

Anaerobic reactor $40 \text{ m}^3 (35 + 5)$

Design flow-rate $60 \text{ m}^3/\text{d}$

AnMBR applied to low strenght UWW

Case study of industrial prototype (Alcázar de San Juan WWTP)

Energy demand (technology comparison)

Scenario	Energy Consumption (kWhm³)	Energy Recovery (kWh/m³)	Net Energy Consumption (kWh/m³)
CAS w/o energy recovery	0.42	-	0.42
CAS with energy recovery	0.44	0.16	0.28
AeMBR w/o energy recovery	0.50	-	0.50
AeMBR with energy recovery	0.54	0.13	0.41
AnMBR with energy recovery	0.59	0.65	-0.07

↑ organic matter (COD) in the influent

↑ benefits

LIFE ZERO WASTE WATER

Integrated management of Urban Wastewater (UWW) and the Organic Fraction of Municipal Solid Waste (OFMSW) for populations of less than 50.000 inhabitants

http://www.lifezerowastewater.com

Total amount: 2.464.520 € & BUDGET INFO: % EC Co-funding: 55%

DURATION: Start: 01/09/2020 - End: 31/08/2024

PROJECT'S IMPLEMENTORS:

LIFE ZERO WASTE WATER

Different integration options to be analysed in the project

Gravity driven transport

Only food waste is treated

The AnMBR Plant

Anaerobic digester and 3 types of membrane modules

Design flows:

50 m³/d UWW

125 kg/d OFMSW

 $(\sim 300 \text{ PE with } 70\% \text{ PF})$

The LIFE ZWW project concept

Circular economy in the urban sanitation sector

Management of the OFMSW in the EU

Bio-waste "capture rate" (BW collected as a share of BW generated)

Management of the OFMSW in the EU

- Separate collection of Bio-waste must be implemented to fulfill the Waste Framework Directive (EU 2018/851) and the Landfill Directive (EU 2018/850)
 - It is crucial for bio-waste recycling (high quality compost, less inert/toxic materials)
- So far, door-to-door and street containers are the most extended systems
- But, for many cities, it is not easy to implement in few years:
 - It requires careful planning, design, and citizen engagement.
 - Achieving high bio-waste quality and "capture rates" can take many years, even with awareness campaigns.
 - Impurities can be reduced, but can still exceed 15% in street containers.
- Separate collection is now being implemented is Spain by legal requirements, but in most cases it is inefficient and expensive for citizens.

The combination of FWDs with AnMBR-based RRFs can promote effective bio-waste recycling.

Use of FWDs with AnMBR systems

Advantages for MSW management: citizen engagement

FWDs simplify the separation of bio-waste to citizens at home:

- No special bin is required for organic waste separation.
- The use of compostable/plastic bags is avoided.
- The effort of citizens is significantly reduced.
- Easy solutions enhance engagement and BW capture rates.

Citizen engagement relies on FWD installation (Penetration Factor).

A high PF means less organics in the mixed waste street container.

Less OM will end up in a landfill.

Use of FWDs with AnMBR systems

Advantages for MSW management: road transport reduction

Significant reduction in collection and transport requirements:

High collection frequency required (warm climates)

- It reduces **cost** and **environmental impact** of MSW collection
- Reduction in truck traffic, noise, air pollution, etc.

CONCLUSIONS

- Main benefits of the solution proposed in the LIFE ZWW project:
 - It promotes Circular Economy in urban sanitation at the local level.
 - It allows anaerobic treatments being implemented in small and decentralised WWTPs.
 - It allows a fast increase of bio-waste capture rates (only FWD installation required)
 - FWDs ensure the quality of bio-waste, avoiding improper materials.
 - Once the AnMBR plant is built, PF can rise without additional membrane upgrades.
 - The more bio-waste, the greater the benefits (biogas, nutrients, compost...)

TAKE HOME MESSAGE

The AnMBR system enables a paradigm shift in urban sanitation:

"More OM in the influent means more benefits"

The integrated sanitation system facilitates MSW management and increases the benefits of RRFs.

Integrated sanitation system

Josep Ribes

Universitat de València

josep.ribes@uv.es

LIFE ZERO WASTE WATER - LIFE19 ENV/ES/000631

With the contribution of the LIFE Programme of the European Commission

10th International Conference on **Sustainable Solid Waste Management**

