

Smart fertiliser production from nitrogen recovery process

Guillermo Noriega-Hevia¹, A. González-Míguez¹, A. Mayor¹, L. Rodríguez-Hernández², C. M. Castro-Barros¹

¹ CETAQUA, Water Technology Center

² VIAQUA

guillermo.noriega@cetaqua.com

1. Introduction. What is a biofactory?

WWTP

Wastewater as a waste High energy consumption High greenhouse emissions Unavailable resources

Wastewater as a resource.

Low energy consumption.

Descarbonization and green energy.

Resource recovery

New and circular business models

The aim of this work is to produce a NP Smart BBF

2. Set-up. Nitrogen recovery treatment train

- Anaerobic digestion supernatant as feedstock.
- Filtration unit, to remove the possible solids.
- Ion-exchange unit with natural zeolites for nitrogen concentration.
- HFMC for nitrogen recovery (2 units of 2.5x8 Liqui-Cel).

1. Cation exchange for N concentration

- . Use of zeolite as a cation exchange (CE) surface to retain NH_4^+ from rejected water from WWTP.
- . HRT below 14 min radically compromise de CEC of zeolite.
- . HRT of 14 min was established as optimal.

Figure 2. Operational flow rate tested in duplicate.

HRT (min)	Average CEC (g NH₄⁺-N /g zeolite)	
8	8.60	
14	13.70	
18	12.81	
38	13.47	

1. Cation exchange for N concentration

- Recovery of a N concentrate permeate with NaOH solution as regenerant being 0.35M the optimum condition.
- Depletion of CEC was observed during the experimentation

Figure 4. Maximum CEC achieved per consecutive assay.

2. HFMC for NH4+ -based salts

- No differences were observed when flow rate increase over 400 mL/min.
- Acid flow rate variation didn't affect the recovery rate or efficiency either.
- Sulphuric acid 0.35M as acid solution
- Final ammonia sulphate solution concentration was around 8% N
- 99% of recovery efficiency was achieved

Figure 7. Acid flow rate effect.

3. Smart BBF production

- It is an ongoing task
- The recipe is defined in terms of struvite and ammonia salt content as well as PGPB.
- 4 bacteria strains were selected: *Pseudomonas putida*, *Bacillus megaterium*, *Azospirillum brasilense* and *Pseudomonas aeruginosa*.
- Pot and field tests are going to be performed.
- It is necessary to add a culture medium to the fertiliser to allow bacteria to grow (LB).

4.Next steps- scale up

Figure 9. Location of the WWTP where the pilot plant will be installed.

Figure 10. Pilot plant layout.

5. Take home messages

- Treatment train is capable to recover nitrogen from anaerobic digestion supernatant with a high recovery efficiency
- The optimum conditions have been defined at lab scale in terms of flow rates, NaOH concentration or acid concentration.
- The Smart BBF recipe is defined and the PGPB selected
- Next steps are defined in terms of:
 - Scale-up
 - Pot and field trials of the fertiliser

v 🗓 Þ 🗟

WWW.CETAQUA.COM

Thank you!

Guillermo Noriega-Hevia (guillermo.noriega@cetaqua.com)

The authors are grateful to the Axencia Galega de Innovación through FEDER Galicia 2021-2027 (IN853C2022/03).

Barcelona	Galicia	Andalusia	Chile
Crta. d'Esplugues, 75, 08940 Cornellà de Llobregat, Barcelona Tel. 93 312 48 00	Aquahub - A Vila da Auga Rúa de José Villar Granjel, 33, 15898 Santiago de Compostela, A Coruña Tel. 881 02 50 40	Calle Severo Ochoa, 7 29590 Málaga Tel. 952 02 85 92	Los Pozos 7340, Piso 2, Comuna de Las Condes, Santiago de Chile Tel. +56 22569 2407
Aigües de Encelona Encelonarios Encelonarios Encelonarios	DVIAQUA USC <u>SCCSIC</u>		

CHANIA 2023