

Transcriptional Responses of *Saccharomyces cerevisiae* to Environmental Stresses During Bioethanol Production Using Biochar-Based Biocatalysts

<u>Michalis Koutinas¹</u>, Kyriakou M¹, Ioannou AG², Christodoulou M¹, Fotopoulos V²

¹Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus

²Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol, Cyprus

CHANIA2023 - 10th International Conference on Sustainable Solid Waste Management, Chania, Greece, 21-24 June 2023

Challenges in Bioethanol Production

Cyprus University of Technology

□ High **temperatures** (> 37 °C *S. cerevisiae*)

Osmotic stress

D pH variations

Immobilized Biocatalysts in Bioethanol Production

□ Assist yeast tolerance

- Enhance ethanol production rate and yield
- □ Stable product formation
- Easy cell recirculation
- Entrapment in alginate beads
- **D** Poor mechanical properties
- Novel eco-friendly and costeffective rigid carriers

Biochar as a Carrier for Biocatalyst Development

Biochar

- High-carbon, low cost and environmental friendly
- **Pyrolysis** of biomass
- Multiple applications (e.g. wastewater adsorbent, soil amendment)

CHANIA 2023

4

Cyprus

University of

Technology

Biochar as a Carrier for Biocatalyst Development

Cyprus University of Technology

Potential for Cell Attachment

Porous structure

□ Increased **surface area**

□ Surface **functional groups**

□ Assists electro-active strains

Carboxyl

Carbonyl

Phenol

Acidic groups

Ether

HN

Pyrrole

Basic groups

Pyridine

Pyridone

CHANIA 2023

5

Raw Materials, Pyrolysis Conditions & Biochar Properties

Sewage sludge

Peanut shells

Olive kernels

Pistachio shells

Vineyard prunings

Car tyres

Microstructural details (SEM) 250 °C 500 °C

Activated sludge biochar (SEM)

Saccharomyces cerevisiae vs Pichia kudriavzevii

Vineyard prunings biochar: 8.21 g L⁻¹ h⁻¹

Different materials – different efficiencies

Different strains – different efficiencies

S. cerevisiae BBBs at Elevated Temperatures

BBBs vs suspended cultures

- 37, 39 & 41 °C to assess thermotolerance
- Synthetic Citrus Peel Waste-based hydrolysate

Reduced bioethanol production at 41 °C

Productivity of last 3 batches (41 °C)

- **BBB:** 5.1-5.7 g L⁻¹ h⁻¹
- \circ Free cells: 3.3-3.7 g L⁻¹ h⁻¹

Maximum **bioethanol concentration** at 41 °C

- **BBB:** 51.6 g L⁻¹
- **Free cells:** 32.4 g L⁻¹

Challenges in Bioethanol Production

Cyprus University of Technology

Gamma Substrate inhibition

Product inhibition

□ Inhibitors released in pretreatment

□ High **temperatures** (> 37 °C *S. cerevisiae*)

Osmotic stress

pH variations

From the macro-scale to molecular mechanisms

Metabolic responses in S. cerevisiae

Sensing systems and complex signalling networks responding to variations in:

Temperature, osmolarity, inhibitors, etc.

Biochar confers stress multi-tolerance?

CHANIA 2023

Time [h]

..

Expression from the Heat Shock Response Pathway

- □ Heat shock response route **not induced using BBB**
- □ HSF1: 3-fold increase in free cells and 0-fold increase in BBB
- □ HSP104: 2.2-fold increase in free cells and 0.5-fold increase in BBB
- □ Stress induction in free cells
- □ Biochar protects *S. cerevisiae* enhancing heat tolerance

Cyprus

University of Technology

Expression from Genes Induced by Oxidative Stress

Immobilised cells

Free cells

CHANIA 2023

- □ Reactive oxygen species during heat shock
- □ Oxidative stress expressed by the MSN2/MSN4 system
- □ MSN2: 2.0-fold increase in free cells and 0.3-fold <u>decrease</u> in BBB
- □ MSN4: 2.7-fold increase in free cells and 1.4-fold increase in BBB
- □ Stress induction in free cells
- □ Biochar protects *S. cerevisiae* enhancing tolerance to oxidative

stress

S. cerevisiae Fermentations Under Ethanol Stress

70 g L⁻¹ glucose, 30 °C

Similar results using 0 and 70 g L^{-1} initial ethanol conc.

90 g L⁻¹ initial ethanol conc.

BBB: 21 g L⁻¹ net ethanol, 7 g L⁻¹ h⁻¹ productivity, inhibition at 111 g L⁻¹ **Free cells:** complete inhibition (90 g L⁻¹)

Ethanol stress induces heat shock proteins (HSP) similarly to heat shock **HSP12** and **HSP104** confirmed to influence yeast tolerance to ethanol

Cyprus

University of Technology

Expression from Genes Induced by Ethanol Stress

Control: 0 g L⁻¹ ethanol, 70 g L⁻¹ glucose, 30 °C

Stress: 90 g L⁻¹ ethanol, 70 g L⁻¹ glucose, 30 °C

Control: Minor differences in expression from *HSP12* and *HSP104* in suspended cells and BBB

Stress

HSP12: 2.8-fold increase in free cells and 0.8-fold increase in BBBHSP104: 3.2-fold increase in free cells and 0.3-fold increase in BBB

Both genes upregulated in free cells **only at 90 g L⁻¹ ethanol** BBB enhanced **ethanol tolerance**

S. cerevisiae Fermentations Under Osmotic Stress

6

Time [h]

10

12

14

1 M NaCl, 70 g L⁻¹ glucose, 30 °C
Similar final bioethanol concentration, but 74% higher productivity
Free cells: 1.8 g L⁻¹ h⁻¹
BBB: 3 g L⁻¹ h⁻¹
BBB induced osmoprotection

Osmotic stress response signalling pathway regulates osmoprotection

Proline accumulation:

Membrane stabilizer

Protein folding chaperone

Reactive oxygen species scavenger

CHANIA 2023

2

0

Accumulation of Intracellular Proline by Osmotic Stress

1 M NaCl, 70 g L⁻¹ glucose, 30 °C

Intracellular proline in free cells reached 2.5 $\mu mol~g^{\text{-1}}$ wet biomass

Increase of intracellular proline in BBB was not significant

At least 2-fold higher proline accumulation in free cells

Cells tackle the inhibition resulting in reduced bioprocess performance

From a "Trial-and-Error" to a Model-Based Approach

Model-based approaches

Cyprus

University of Technology

Mechanistic Models of Gene Regulation

Linking Gene Regulation to Ethanol Bioprocess Kinetics

Glucose sensing, signalling and bioconversion

Biochemical Description

Logic Description

Genetic Circuit Model

- **o** Biochar includes advanced characteristics for immobilization
- Different raw materials different properties
- Different strains different efficiencies
- **o** Enhanced ethanol production
- High ethanol productivity via *S. cerevisiae* at **elevated temperatures**
- o Immobilization conferred cells with multi-stress tolerance (heat tolerance, ethanol tolerance, osmotolerance)
- Tailor-made (nano)biochar for cells and hydrolytic enzymes immobilization

Kyriakou M.

PhD Students

CHANIA2023 21-24 JUNE chania2023.uest.gr 10th International Conference on Sustainable Solid Waste Management

Michalis Koutinas (email): *michail.koutinas@cut.ac.cy*

Christodoulou M.