

Controllability of HCI and SO₂ release in a grate-fired Waste-to-Energy furnace

Wouter Meynendonckx, Mariya Ishteva, Johan De Greef

Chania 10th International Conference on Sustainable Solid Waste Management Faculty of Engineering Technology ChEMaRTS – NUMA

23/06/2023

Waste-to-Energy: process

Typical problems:

KU LEUVEN

Waste-to-Energy: combustion control

Main setpoints:

- Steam flow (thermal output)
- %O₂ (efficiency of combustion)
- 2) Derived setpoints:
 - Waste throughput
 - Air supply
 - Air ratio (primary vs. secondary)

3 Waste layer control

- Gratespeed
- Air division

De Greef, J., Hoang, Q. N., Vandevelde, R., Meynendonckx, W., Bouchaar, Z., Granata, G., ... & Vanierschot, M. (2023). Towards Waste-to-Energy-and-Materials Processes with Advanced Thermochemical Combustion Intelligence in the Circular Economy. Energies, 16(4), 1644.

Faculty of Engineering Technology Research group ChEMaRTS - NUMA

Perspective

Towards Waste-to-Energy-and-Materials Processes with Advanced Thermochemical Combustion Intelligence in the Circular Economy

Johan De Greef^{1,*}⁽⁰⁾, Quynh N. Hoang¹, Raf Vandevelde¹, Wouter Meynendonckx¹, Zouhir Bouchaar¹, Giuseppe Granata^{1,2}, Mathias Verbeke³⁽⁰⁾, Mariya Ishteva⁴⁽⁰⁾, Tine Seljak⁵, Jo Van Caneghem¹⁽⁰⁾ and Maarten Vanierschot^{6,7}⁽⁰⁾

Analysis and quantification of relation between:

- Combustion control variables
- Chemical composition of flue gas (especially HCl and SO₂)

Faculty of Engineering Technology Research group ChEMaRTS - NUMA **KU LEUVEN**

Three-step approach

Analysis of industrial process data of a grate-fired WtE-furnace

Step 1: Description of plant operation

Conclusion: **Different operating** conditions over time

2022.02

2022.05

Step 2a: Analysis of combustion control

Step 2b: Analysis of combustion control

Ergun's equation:

with:

 $\varepsilon = 0.225$

• $\rho = 0.96 \text{ kg/m}^3$

• $D_p = 0.02 \text{ m}$

Conclusion: Different physical conditions in waste layer

Faculty of Engineering Technology Research group ChEMaRTS - NUMA

Step 3: Analysis of emissions from waste layer

9

causes different **physical conditions** in waste layer resulting in **variable emissions → controllable!!**

De Greef, J., Verbinnen, B., & Van Caneghem, J. (2016). Chemical engineering analysis of SOx and HCI from municipal solid waste in grate-fired waste-to-energy (WtE) combustors. In Proceedings of the 6th International Symposium on Energy from Biomass and Waste-Venice 2016.

Faculty of Engineering Technology Research group ChEMaRTS - NUMA

Conclusion

- Physical conditions in the waste layer influence the release of SO₂ and HCI in grate-fired furnaces
- The release of SO₂ and HCI from the waste is proactively controllable
- Existing potential to upgrade control systems in state-of-the-art WtE with thermochemical intelligence towards SO₂ and HCI
 - Significant economic impact! (avoidance of boiler corrosion and reduction of dosed chemicals in flue gas cleaning)

Future work:

- Development of control models based on machine learning methods
- · Elucidate packed-bed reactor behavior of waste layer

