Catering wastes conversion to bio-crude oil via hydrothermal liquefaction

- Dimitris Liakos
- Loukia Chrysikou
- Stavros Tzouratzoglou
- Vasileios Marios Vasdekis
- Stella Bezergianni

Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute (CPERI), Thessaloniki, Greece Aristotle University of Thessaloniki (AUTH), Department of Chemistry, Thessaloniki, Greece

Hydroprocessing Group

ERTH

CPERI

Chemical Process and Energy Resources Institute

ARISTOTLE NIVERSITY **THESSALONIKI**

BIOMASS IN SPOTLIGHT FOR BIOFUELS PRODUCTION

Global energy demands increase – European regulations

Residual Biomass: Largely available - eco-friendly source for fuels

HYDROTHERMAL LIQUEFACTION

Thermochemical conversion of biomass into liquid fuels Processing in hot, pressurized water environment for sufficient time Break down solid biopolymeric structure to mainly liquid components

HTL benefits over pyrolysis:

- No feedstock drying Utilization of wet biomass
- Solvents act as catalysts due to their high temp. favorable properties
- HTL bio-crude oil is enhanced in terms of yield and fuel properties

OBJECTIVES OF STUDY

2nd Generation biofuels production from catering wastes via HTL

HTL main parameters study in quantitative and qualitative terms

Comparative study between the different biomass types

Spent coffee grounds

Properties	Spent coffee grounds	Orange peels
Moisture (wt%)	11.3	6.0
Ash (wt%)	1.12	3.8
Cellulose (wt%)	12.1	40.0
Hemicellulose (wt%)	33.5	24.0
Lignin (wt%)	22.2	5.2

Orange Peels

HYDROTHERMAL LIQUEFACTION PROCESS

BIOMASS

SOLVENT

- Temperature: 280° 350 °C
- Reaction Time: 5 60 min

- Solid Liquid Ratio: 1 / 10
- > Compression gas: N_2 30 bar

PRODUCTS

1. Gas sampling
2. Filtration of products
3. Aqueous phase removal
4. Acetone extraction
5. Acetone evaporation
6. Solid residue drying
Cas products
Cas products
Satisfies of products
<

HYDROTHERMAL LIQUEFACTION OF SPENT COFFEE GROUNDS

Effect of temperature on bio-crude oil yield

- High conversion rates of spent coffee grounds (over 80 wt%) ullet
- **Optimal Temperature was found at 300 °C** •
- Solid Residue yield was declining as temperature rose (from 20 to 17 wt%) •
- Maximum bio-crude oil yield obtained was 33.5 wt% •

Effect of temperature on solid residue yield

HYDROTHERMAL LIQUEFACTION OF SPENT COFFEE GROUNDS

Effect of residence time on bio-crude oil yield

- Residence time has no significant effect in yield of bio-crude oil and solid residue ullet
- **Optimal residence time was found at 30 minutes** ullet
- At 60 min liquid molecules are gasified ullet
- At lower temperatures there is small decline in oil yield ullet

Effect of residence time on solid residue yield

HYDROTHERMAL LIQUEFACTION OF ORANGE PEELS

Effect of temperature on bio-crude oil yield

- Orange peels hydrothermal liquefaction renders poor bio-crude oil yield ●
- Bio-crude oil yield varied from 16.5 to 18.5 wt% ۲
- Optimal temperature was 320 °C but with no significant difference ullet
- Solid residue yield significantly declining as temperature rises •

Effect of temperature on solid residue yield

COMPARATIVE STUDY OF FEEDSTOCKS

Spent coffee grounds appear as more suitable feedstock for production of biofuel intermediates •

Solid residue yield has the same trend in both feedstocks and similar yields ullet

GAS PRODUCTS ANALYSIS

MOLECULE	SPENT COFFEE GROUNDS	
Hydrogen	_	
Methane	0 - 12	
Ethane	_	
Propane	0 - 0.5	
Isobutane	0-0.2	
N-butane	0.03 - 0.16	
Isopentane	0-0.72	
N-pentane	0.02 – 0.28	
C6 ⁺ (6 or more carbons)	0.15 – 1.27	
Carbon dioxide	87 – 98.1	
Carbon Monoxide	0 - 5.9	

ORANGE PEELS

- 0.4 2.95
- 0 0.5
- 0.04 0.22
 - 0-0.03
 - 0-0.06
 - 0 0.01
- 0-0.02
- 0.14 0.21
- 94.5 97.8
- 1.29 1.63

GC-FID ANALYSIS ON GAS PRODUCT

- Main product is carbon dioxide
- Methane and carbon monoxide in lower concentration

• Small traces of:

- Ethane
- Propane
- Butane
- Pentane
- 6 or more carbon atoms

QUALITATIVE ANALYSIS OF BIO-CRUDE OIL FROM COFFEE

Quantity	Chemical Compound	
15.80	n-Hexadecanoic acid	
8.61	9,12-Octadecadienoic acid (Z,Z)-	
7.91	9,12-Octadecadienoic acid (Z,Z)-	700
3.94	Octadecanoic acid	600
2.79	Tetradecanamide	ຍ ອັ ⁵⁰⁰
1.93	9,12-Octadecadienoic acid (Z,Z)-	nter 400
1.89	n-Hexadecanoic acid	<u>e</u> 300
1.56	13-Tetradecen-1-ol acetate	= 200 ⊥ 100
1.55	n-Hexadecanoic acid	0
1.33	n-Hexadecanoic acid	ok
1.33	1,19-Eicosadiene	massi
1.10	9,12-Octadecadienoic acid (Z,Z)-	
1.06	9,12-Octadecadienoic acid (Z,Z)-	
0.95	9,12-Octadecadienoic acid (Z,Z)-	
0.93	9,12-Octadecadienoic acid (Z,Z)-	
0.92	9,12-Octadecadien-1-ol, (Z,Z)-	0.
0.86	3-(3,4-Dimethyl-6-Phenylcyclohex-3-enyl)prop-2-enoic acid	• 01
0.83	n-Hexadecanoic acid	
0.81	n-Hexadecanoic acid	• Mc
0.77	9,12-Octadecadienoic acid (Z,Z)-	
0.70	n-Hexadecanoic acid	
0.69	9,12-Octadecadien-1-ol, (Z,Z)-	
0.68	n-Hexadecanoic acid	
0.65	n-Hexadecanoic acid	· •
0.60	n-Hexadecanoic acid	• 01
0.58	9,12-Octadecadienoic acid (Z,Z)-	
0.54	Octadecanoic acid	• Up
0.50	Linoleic acid ethyl ester	

GC-MS ANALYSIS ON BIO-CRUDE OIL

contains significant quantities of diesel range carbon chains

st of these compounds contain heteroatoms (acids, esters, amides)

SIM-DIS ANALYSIS ON BIO-CRUDE OIL

is heavier than diesel and gasoline cuts

grading is necessary to remove heteroatoms and get the oil lighter

QUALITATIVE ANALYSIS OF BIO-CRUDE OIL FROM ORANGE PEELS

Quantity	Chemical Compound
6.68	Stigmastan-3,5-diene
4.54	Octadecanoic acid
3.67	Decanedioic acid, bis(2-ethylhexyl) ester
3.06	Heptadecane
2.80	9,12-Octadecadienoic acid (Z,Z)-
2.77	.gammaSitosterol
2.67	1-Nonadecene
2.67	1-Chloroeicosane
1.85	n-Hexadecanoic acid
1.60	1H-Pyrazole-4-carbaldehyde, 3-(4- methoxyphenyl)-
1.53	Pyrene, 1-methyl-
1.46	1,2-Benzenedicarboxylic acid, diisooctyl ester
1.35	Benzene, 1,4-dichloro-2,3,5-triethyl-
0.91	1,3-Bis(trimethylsiloxy)benzene
0.84	Phenol, 4-ethyl-2-methoxy-
0.79	Cyclohexane, hexaethylidene-
0.66	4H-Thiazolo[5,4-b]indole, 2,5,7-trimethyl-
0.58	Tetradecane

GC-MS ANALYSIS ON BIO-CRUDE OIL

oil from orange peels also contains diesel range carbon chains

nplex molecules existence such as stigmastane

e oil needs also upgrading to remove heteroatoms and crack molecules

oil not miscible in most solvents – no sim-dis analysis available

CONCLUSIONS

Bio-crude oil yield and quality were with valorization of spent coffee grounds

Orange peels bio-crude oil was poor in terms of yield and properties

Produced bio-crude oil needs upgrading in order to be used as final liquid biofuels

HTL appears as potential and sustainable process in bio-fuels production chain

Thank you !!

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK- 00189 "Production of sustainable biofuels and value-added products from municipal organic solid wastes of catering services – Brew2Bio").

Chemical

Energy

Institute

Process and

Resources