

Carbon capture for Energy-from-Waste plants: comparison of three appliable technologies

L. Cretarola, G. Mazzolari, E. De Lena, M. Spinelli, M. Gatti, F. Viganò

10° International Conference on Sustainable Waste Management

Chania, 23 June 2023

Carbon Capture technologies for EfW plants

Methodology for CC implementation

Results

Municipal solid waste potential

3.88 billion tonnes of waste will be generated in 2050 due to rapid population growth.

B

Each tonne of municipal solid waste burnt typically releases between **0.7 and 1.7 tonnes** of CO₂, considering both the fossil and biogenic parts.

https://openknowledge.worldbank.org/handle/10986/30317

Energy-from-Waste potential

 $(\mathcal{P}_{\mathcal{P}})$

EfW plants in Europe can provide electricity and heat to 18 million and 15 million inhabitants respectively, avoiding the emission of **24-49 million tonnes** of CO₂.

In existing European EfW plants there is a potential to capture **60**-**70 million tons** of CO_2 per year.

https://www.cewep.eu/what-is-waste-to-energy/

Carbon Capture technologies for EfW plants

Methodology for CC implementation

Results

MonoEthanolAmine

- + **TRL**: 9 (commercial full scale)
- + **Retrofittability**: end-of-pipe
- High heat requirement for regeneration (~ 4 GJ/ tonCO₂)
- **Solvent degradation**

Calcium Looping

- + Possibility of **thermal recovery**
- + Lower energy penalty
- Loss of CO₂ carrying capacity due to unwanted reactions
- Only **pilot plant** demonstration

Molten Carbonate Fuel Cell

+ Additional energy production

- + **Retrofittability**: end-of-pipe
- Additional natural gas consumption
- High uncertainty on cost and degradation

Carbon Capture technologies for EfW plants

Methodology for CC implementation

Results

Reference waste and EfW plant

ThenEfWanptaenatils60h990rtons9fthe Parstea petayneain Emilia Romagna (Italy), which consists of 2

CO₂ emission factors

- Overall CO₂: $97.69 \text{ kg/GJ}_{LHV}$
- Biogenic CO₂: $49.63 \text{ kg/GJ}_{LHV}$ (share: 50.8%)
- Fossil CO₂: $48.06 \text{ kg/GJ}_{LHV}$

MEA-based CC section

- Two main reactors: the **absorber** and the **stripper**, equipped with the reboiler for the regeneration of the solvent.
- Compression and Purification Unit: a series of inter-refrigerated compressors to bring the CO₂ – flow to 110 bar.

2-MCFC-based CC section

- Cathode side connection:
 series/parallel mixed, to ensure
 the inlet temperature of 570 °C
 and the maximum temperature
 difference across the cell.
- Compression and Purification Unit: necessary to separate the tail gas from the pure CO₂-flow.

1-MCFC-based CC section

• Same layout in terms of main components and operating conditions, except for splitters for flue gases and natural gas which are not necessary.

CaL-based CC section

- Two main reactors: the **carbonator** and the **calciner**, equipped with the SRF combustion.
- Oxygen for oxy-combustion is produced on-site, thanks to the **Air Separation Unit**.

DH network

- Two coupling situations can be considered: small and large DH.
- The load duration curve is modelled analytically.

	Small DH network	Large DH network		
a, MW	2.0	4.0		
ΔP , MW	50.0	100.0		
k, -	165			
n, -	0.3			

DH parameters

Carbon Capture technologies for EfW plants

Methodology for CC implementation

Results

Energy balances – minimum cogeneration

	Reference	MEA	2 MCFC	1 MCFC	CaL
Energy potential of treated waste, MW_{LHV}	71.32	71.32	71.32	71.32	66.60
NG input to MCFCs, MW _{LHV}	-	-	32.88	35.37	-
Grate combustor(s) input, MW _{LHV}	71.32	71.32	71.32	71.32	35.66
SRF calciner input, MW _{LHV}	-	-	-	-	29.31
Energy lost for SRF production, MW _{LHV}	-	-	-	-	1.63
Steam cycle electric power output, MW _{EL}	16.49	12.29	16.36	16.40	16.13
MCFCs electric power output, MW _{EL}	-	-	20.17	20.24	-
Auxiliaries of EfW section, MW _{EL}	2.96	3.00	3.01	3.01	3.00
Auxiliaries of CC section, MW _{EL}	-	2.58	4.38	4.26	6.23
Consumption for SRF production, MW _{FL}	-	-	-	-	0.25
Net electric power outcome, MW _{EL}	13.53	6.71	29.14	29.37	6.65
Thermal power required by CC section, MW _{TH}	-	23.11	-	-	-
Thermal power recovery from CC section, MW _{TH}	-	0.55	0.85	0.81	0.00
Thermal power adjustment (from steam cycle), MW _{TH}	-	0.00	0.70	0.49	0.00
Minimum cogenerated thermal power (70-120°C), MW _{TH}	0.00	0.55	1.55	1.31	0.00
Overall net electric efficiency, %LHV	18.97	9.40	27.97	27.54	9.99
Overall net thermal efficiency, %LHV	0.00	0.77	1.49	1.22	0.00

CO₂ capture performances

Treated waste: 160'000 t/y

	Reference	MEA	2 MCFC	1 MCFC	CaL
CO ₂ emission from EfW plant, kt/y	163.25	15.84	16.50	23.71	6.39
CO ₂ emission from SRF production, kt/y	-	-	-	-	11.14
Overall CO₂ emissions , kt/y	163.25	15.84	16.50	23.71	17.53
Overall fossil CO₂ emissions , kt/y	80.37	-64.53	-63.88	-56.66	-62.85
Overall CO₂ capture efficiency, %	-	90.30	92.04	88.73	89.26
Capture efficiency of CO ₂ from NG, %	-	-	100.00	90.00	-
Capture efficiency of CO ₂ from waste, %	-	90.30	89.90	88.37	89.26

SPECCA index

For EfW + CCS plants, it is necessary to define a **modified SPECCA** that takes into account the fixed amount of burned waste and the change in efficiency due to the capture section.

$$SPECCA = -\frac{\Delta EP}{\Delta CO_2} = -\frac{E_{NG} - \frac{\Delta E_{el}}{\eta_{STD,el}} - \frac{\Delta E_{th}}{\eta_{STD,th}}}{CO_{2,waste} + CO_{2,CCS} - \Delta E_{el} * e_{el,STD} - \Delta E_{th} * e_{th,STD}}$$

	NGCC	NGCC	
	without CC (a)	with CC (b)	
Net electric efficiency, %	58.3	49.9	
Specific CO ₂ emissions, kg/kWh	351.8	36.2	
Marginal ratio cogenerated heat / electricity lost	7.7		

Energy performances - coupling with DH network

Small DH network

	Reference	MEA	2 MCFC	1 MCFC	CaL
Annual saleable thermal energy, GWh _{TH}	56.82	52.07	56.85	56.85	58.53
Annual saleable electricity, GWh _{EL}	69.95	31.35	163.09	164.18	32.24
Annual SPECCA ^(a) , MJ/kg _{CO2}	-	2.03	0.73	1.05	1.80
Annual SPECCA ^(b) , MJ/kg _{CO2}	-	2.16	0.16	0.71	1.94

Large DH network

	Reference	MEA	2 MCFC	1 MCFC	CaL
Annual saleable thermal energy, GWh _{TH}	106.71	84.74	106.32	107.06	110.35
Annual saleable electricity, GWh _{EL}	61.79	26.00	155.00	155.96	23.76
Annual SPECCA ^(a) , MJ/kg _{CO2}	-	2.00	0.73	1.05	1.81
Annual SPECCA ^(b) , MJ/kg _{CO2}	-	2.13	0.16	0.71	1.94

23/06/2	2023
---------	------

Carbon Capture technologies for EfW plants

Methodology for CC implementation

Results

Thank you for your attention!

Contact: letizia.cretarola@polimi.it

References

- Consonni, S., and Viganò, F., 2011, "Material and energy recovery in integrated waste management systems: The potential for energy recovery", Waste Management 31, 2074-2084.
- Viganò F., Consonni S., Ragazzi M., Rada E. C., 2011, "A model for mass and energy balances of bio-drying", Paper 5457 in Proceedings of NAWTEC19: 19th Annual North American Waste-to-Energy Conference, Lancaster (PA), USA, May 16-18, 2011.
- Viganò, F., Cretarola, L., Spinelli, M., 2022, "Molten Carbonate Fuel Cells (MCFC) for the carbon capture in Energy-from-Waste (EfW) plants", Proceedings of Venice 2022: 9th International Symposium on Energy from Biomass and Waste, Venice, Italy, November 21-23, 2022.
- G. Mazzolari, S. Consonni, M. Spinelli, and E. De Lena, "CO 2 capture by Calcium Looping in Waste to Energy plants: case studies for medium scale applications TESI DI LAUREA MAGISTRALE IN MECHANICAL ENGINEERING-INGEGNERIA MECCANICA," 2021.