

Thermal energy, fillers and pigments from wood packaging waste

<u>V. Benedetti¹</u>, L. Menin¹, S. Piazzi¹, D. Antolini¹, M. Kollmer², F. Patuzzi¹, M. Baratieri¹

¹ Faculty of Engineering, Free University of Bozen – Bolzano, Italy ² Burkhardt GmbH, Mühlhausen, Germany

Chania, 21-24 June 2023

Previously in Corfu...

Circular systemic solutions

CSS1: Circular approach to wood packaging waste

CSS2: Circular approach to food and feed

CSS3: Circular approach to wastewater and nutrients

CSS4: Circular approach to industrial and urban plastic/rubber waste

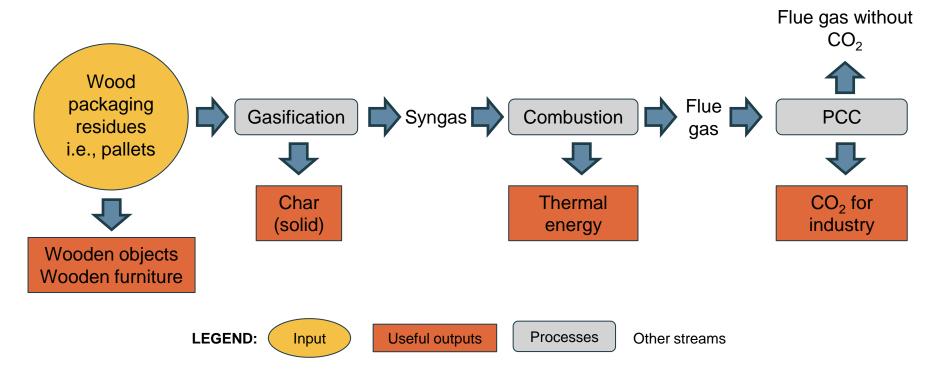
Circular systemic solutions

CSS1: Circular approach to wood packaging waste

CSS2: Circular approach to food and feed

CSS3: Circular approach to wastewater and nutrients

CSS4: Circular approach to industrial and urban plastic/rubber waste



CSS1 – Overview

Objective: Development of a circular economy concept based on the valorization of wood packaging waste (e.g., pallets) through refurbishing, reusing, recycling, energy recovery, and material valorization.

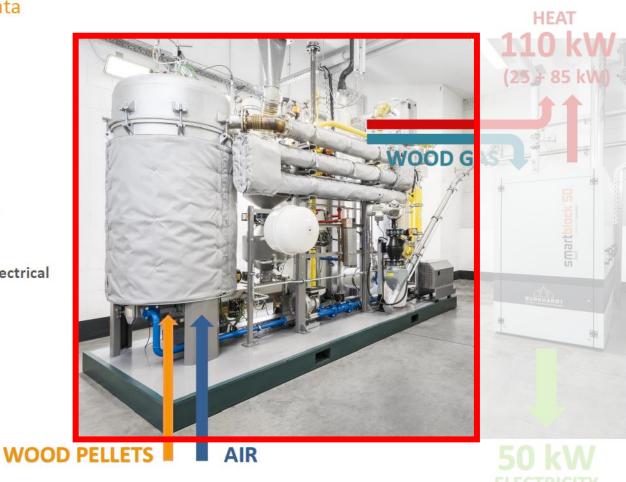
CSS1 – Biomass gasifier

CSS1 – Biomass gasifier

Performance data

50 kW Electrical output

110 kW Thermal output


40 kg/h Pellet-consumption

1,5 kW Self-consumption electrical

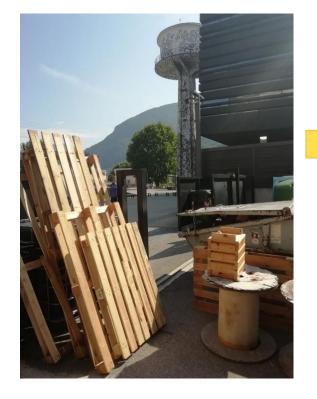

25 % Electrical efficiency

55 % Thermal efficiency

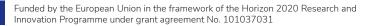
80 % Total efficiency

Now in Chania...

The International States


.

Feedstock



Pallet chips

Dust

Pellets

Feedstock

Feedstock

Feedstock

	Standard	Pellets	Unit
	pellets	from pallets	
Proximate analysis			
Moisture	8.7	9.3	% as received
Volatiles	81.2	79.2	% dry basis
Ash	0.5	2.1	% dry basis
Fixed carbon	18.3	18.7	% dry basis
Ultimate analysis			
Carbon	49.95	49.30	% dry basis
Hydrogen	6.05	5.99	% dry basis
Nitrogen	0.12	0.35	% dry basis
Sulfur	0.01	0.02	% dry basis
Chlorine	0.01	0.03	% dry basis
Oxygen	43.38	42.24	% dry basis
Gross Heating Value	19.65	19.51	MJ/kg, dry basis
	17.93	17.69	MJ/kg, as received
Net Heating Value	18.33	18.21	MJ/kg, dry basis
Research and	16.52	16.29	MJ/kg, as received

	Standard	Pellets	Unit
	pellets	from pallets	
Proximate analysis			
Moisture	8.7	9.3	% as received
Volatiles	81.2	79.2	% dry basis
Ash	0.5	2.1	% dry basis
Fixed carbon	18.3	18.7	% dry basis
Ultimate analysis			
Carbon	49.95	49.30	% dry basis
Hydrogen	6.05	5.99	% dry basis
Nitrogen	0.12	0.35	% dry basis
Sulfur	0.01	0.02	% dry basis
Chlorine	0.01	0.03	% dry basis
Oxygen	43.38	42.24	% dry basis
Gross Heating Value	19.65	19.51	MJ/kg, dry basis
	17.93	17.69	MJ/kg, as received
Net Heating Value	18.33	18.21	MJ/kg, dry basis
Research and	16.52	16.29	MJ/kg, as received

Concentration of major elements

Sample	Al (ppm)	Ca (ppm)	Fe (ppm)	K (ppm)	Mg (ppm)	Na (ppm)	Si (ppm)
Standard	42.7	1697	69.0	591	199	27.5	210
from pallets	943	1932	3614	770	545	284	1250

Concentration of trace elements

Sample	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	V (ppm)	Zn (ppm)
Standard	0.11	0.08	0.39	1.11	121	0.22	0.21	0.87	12.5
from pallets	0.16	0.21	7.45	14.9	107	5.34	5.45	0.85	52.0

Concentration of major elements

Sample	Al (ppm)	Ca (ppm)	Fe (ppm)	K (ppm)	Mg (ppm)	Na (ppm)	Si (ppm)
Standard	42.7	1697	69.0	591	199	27.5	210
from pallets	943	1932	3614	770	545	284	1250

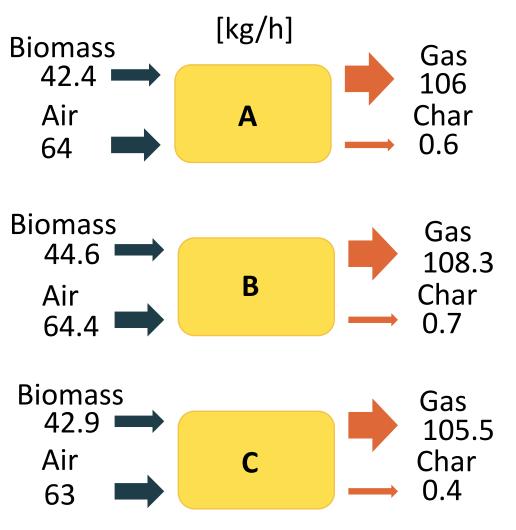
Concentration of trace elements

Sample	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	V (ppm)	Zn (ppm)
Standard	0.11	0.08	0.39	1.11	121	0.22	0.21	0.87	12.5
from pallets	0.16	0.21	7.45	14.9	107	5.34	5.45	0.85	52.0

1st tests:

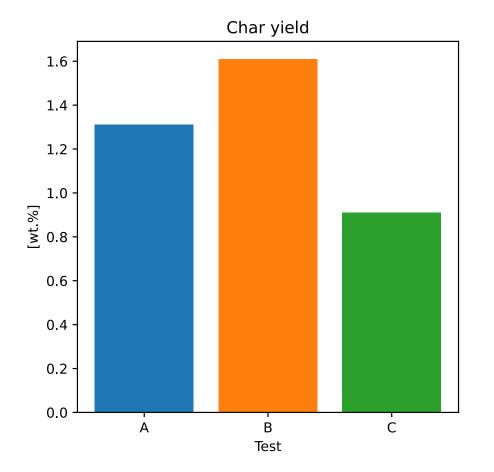
2nd tests:

Funded by the European Union in the framework of the Horizon 2020 Research and Innovation Programme under grant agreement No. 101037031



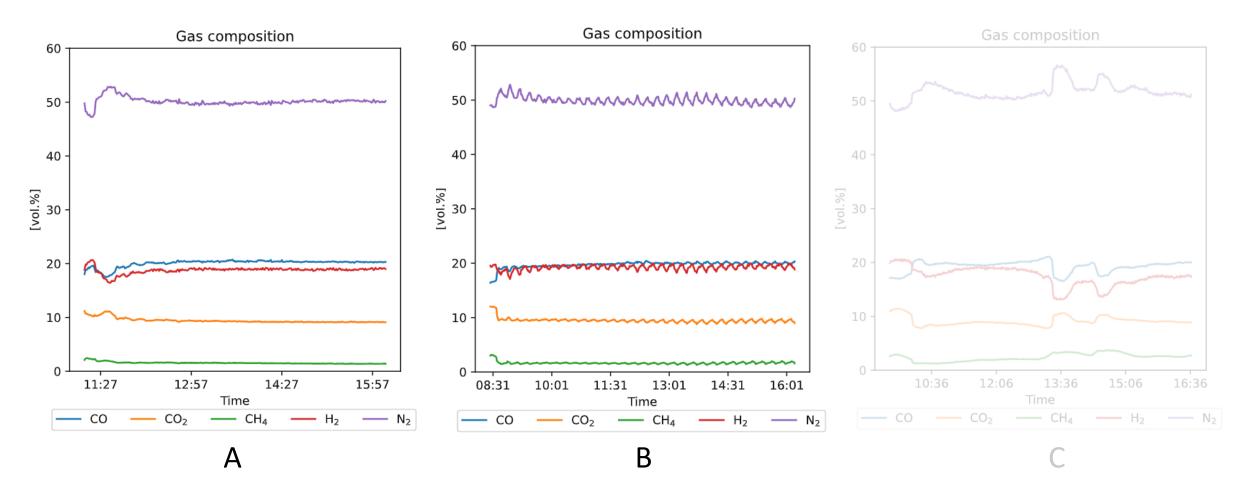
Gasification tests with standard pellets

-	Α	В	С
Vibration	0	5 min <i>,</i> every 15 min	Always
Coke bed height	87 cm	87 cm	92 cm



Gasification tests with standard pellets

-	Α	В	С
Vibration	0	5 min <i>,</i> every 15 min	Always
Coke bed height	87 cm	87 cm	92 cm



Gasification tests with standard pellets

Funded by the European Union in the framework of the Horizon 2020 Research and Innovation Programme under grant agreement No. 101037031

Char characterization

	Char A	Char B	Unit
Moisture	3.2	3.4	% as received
Volatiles	11.1	12.4	% dry basis
Ash	19.0	16.3	% dry basis
Fixed carbon	69.9	71.3	% dry basis
Carbon	81.20	83.70	% dry basis
Hydrogen	0.68	0.50	% dry basis
Nitrogen	0.41	0.66	% dry basis
Sulfur	0.10	0.07	% dry basis
Chlorine	0.15	0.15	% dry basis
Gross Heating Value	27.64	28.39	MJ/kg, dry basis
	26.75	27.42	MJ/kg, as received
Net Heating Value	27.50	28.29	MJ/kg, dry basis
	26.54	27.23	MJ/kg, as received
Specific surface area	587	1075	m²/g
Pore volume	0.66	0.91	cm³/g
Pore size	8.7	7.3	nm

Char characterization

	Char A	Char B	Unit
Moisture	3.2	3.4	% as received
Volatiles	11.1	12.4	% dry basis
Ash	19.0	16.3	% dry basis
Fixed carbon	69.9	71.3	% dry basis
Carbon	81.20	83.70	% dry basis
Hydrogen	0.68	0.50	% dry basis
Nitrogen	0.41	0.66	% dry basis
Sulfur	0.10	0.07	% dry basis
Chlorine	0.15	0.15	% dry basis
Gross Heating Value	27.64	28.39	MJ/kg, dry basis
	26.75	27.42	MJ/kg, as received
Net Heating Value	27.50	28.29	MJ/kg, dry basis
	26.54	27.23	MJ/kg, as received
Specific surface area	587	1075	m²/g
Pore volume	0.66	0.91	cm³/g
Pore size	8.7	7.3	nm

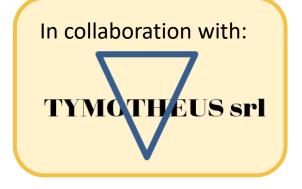
Char characterization

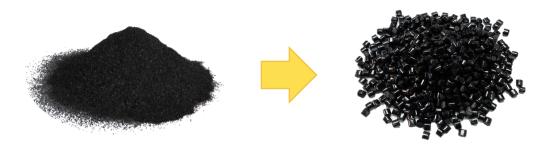
Concentration of oxides

Sample	Al ₂ O ₃ (%)	CaO (%)	Fe ₂ O ₃ (%)	K ₂ O (%)	MgO (%)	Na ₂ O (%)	SiO ₂ (%)
Char A	0.66	38.32	1.52	14.45	4.84	0.64	4.97
Char B	0.32	39.49	0.85	16.71	4.50	0.53	1.92

Concentration of trace elements

Sample	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	V (ppm)	Zn (ppm)
Char A	41.9	2.03	33.8	222	4.99	42.6	50.1	1.25	1847
Char B	37.5	1.74	9.64	234	4.5	21.8	53.5	0.43	1832





Char addition to polymers - materials

Samples:

- 1. LDPE: Pure low-density polyethylene
- 2. Front S11.1: Granulated compound
- **3. PE+1%ST**: Polyethylene 99% + 1%wt char A Standard (ST)
- **4. PE+1%MCY**: Polyethylene 99% + 1%wt char B Maximum Carbon Yield (MCY)

Char addition to polymers - methods

Sample preparation:

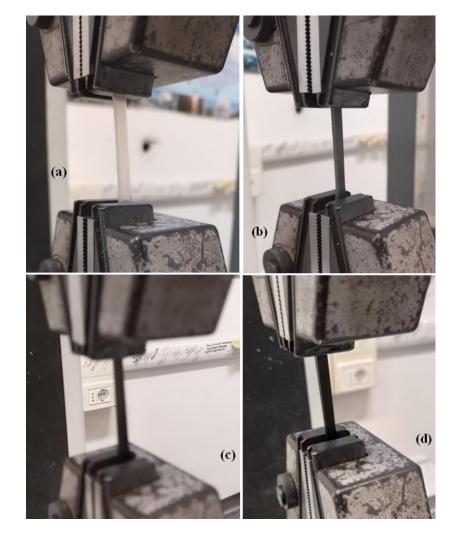
- **Compounding** by DSM Micro-compounder 15 cc ٠ co-rotating twin-screw extrusion with mixing function.
- **Injection-moulding** by DSM Micro Injection Moulding Machine 10 cc.

For the production of the samples to be tested for Melt Flow Index (MFI), simple threads were produced by flowing the material from the extrusion head. This material was ground using a polymer recycling device, i.e., a TRIA blade mill.

Char addition to polymers - methods

	LDPE	FrontS11.1	PE+1%ST	PE+1%MCY	
Mixing time [s]		60		75	
T profile [°C]	150 - 165 - 180			Different	
T melt [°C]		1	76		viscosity
Screw rotation speed [rpm]		50		39	
T mould [°C]	25				
T injection [°C]	185				
P injection [bar]		1	11		
Injection time [s]		1	19		

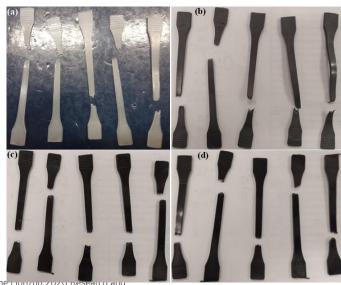
Char addition to polymers - methods

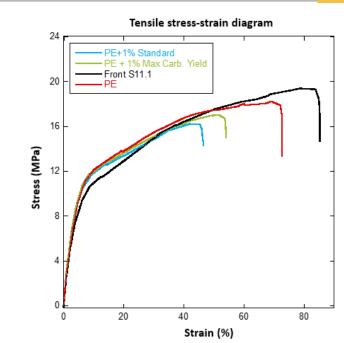

Tensile tests:

- Following ISO 527
- Universal electronic dynamometer from LLOYD INSTRUMENT, model 30K (no external strain gauges)
- Type 1BA geometry
- Traverse speed of 50 mm/min
- Useful stretch ~ 50 mm
- Tests were conducted until the specimens ruptured, which occurred for limited plastic deformations

MFI tests:

- MFI 452 device from MP strumenti
- T = 190 °C
- w = 2.16 kg
- t = 60 s

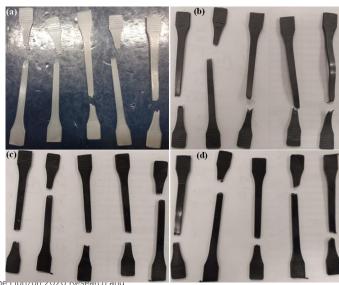


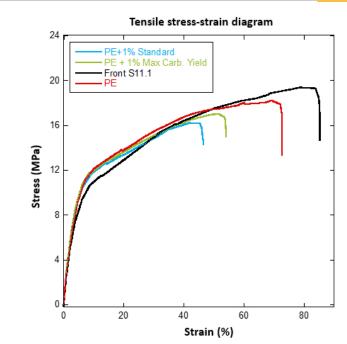


Char addition to polymers - results

Sample	σ _γ (MPa)	ε _γ (%)	σ _{br} (MPa)	ε _{br} (%)	E (MPa)	MFI (g/10min)
LDPE	10.77 ± 0.31	3.33 ± 0.10	17.95 ± 0.30	70.72 ± 2.35	325.13 ± 10.68	1.92 ± 0.03
Front S 11.1	9.94 ± 0.51	3.45 ± 0.11	19.25 ± 0.97	81.53 ± 7.01	294.90 ± 25.65	2.40 ± 0.03
PE+1% ST	11.02 ± 0.42	3.37 ± 0.20	16.75 ± 1.22	46.90 ± 3.58	326.18 ± 28.00	1.66 ± 0.03
PE+1% MCY	11.03 ± 0.55	3.50 ± 0.29	17.14 ± 0.45	47.52 ± 3.38	314.62 ± 20.96	1.60 ± 0.01

Funded by the European Union in the framework of the Franzov Research Innovation Programme under grant agreement No. 101037031





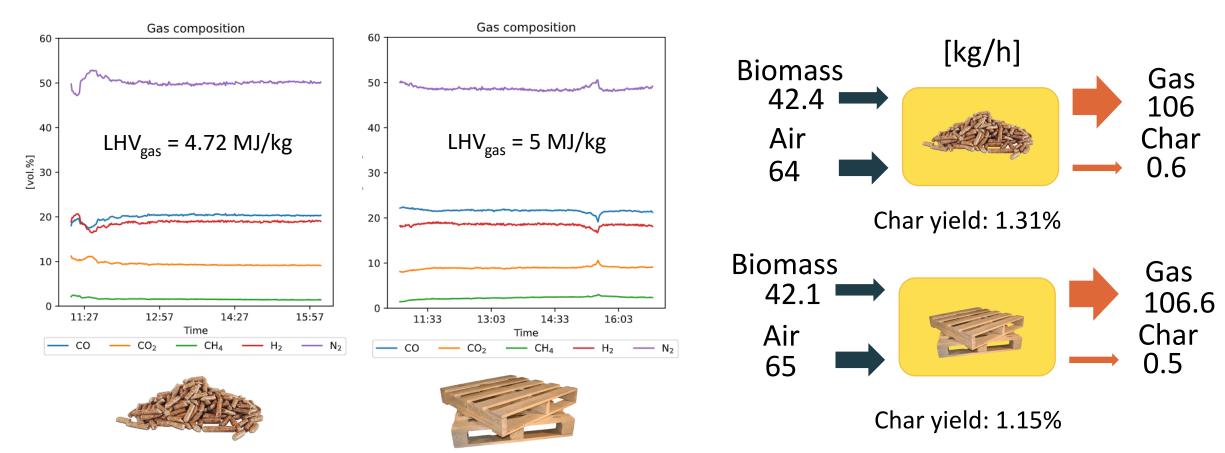
Char addition to polymers - results

Sample	σ _γ (MPa)	ε _γ (%)	$\sigma_{\sf br}$ (MPa)	ε _{br} (%)	E (MPa)	MFI (g/10min)
LDPE	10.77 ± 0.31	3.33 ± 0.10	17.95 ± 0.30	70.72 ± 2.35	325.13 ± 10.68	1.92 ± 0.03
Front S 11.1	9.94 ± 0.51	3.45 ± 0.11	19.25 ± 0.97	81.53 ± 7.01	294.90 ± 25.65	2.40 ± 0.03
PE+1% ST	11.02 ± 0.42	3.37 ± 0.20	16.75 ± 1.22	46.90 ± 3.58	326.18 ± 28.00	1.66 ± 0.03
PE+1% MCY	11.03 ± 0.55	3.50 ± 0.29	17.14 ± 0.45	47.52 ± 3.38	314.62 ± 20.96	1.60 ± 0.01

Funded by the European Union in the framework of the Fionzon 2020 Research Innovation Programme under grant agreement No. 101037031

1st tests:

2nd tests:



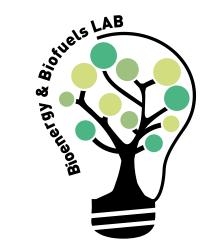
Gasification tests with pellets from pallets

Condition A

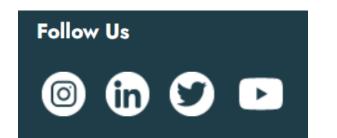
Funded by the European Union in the framework of the Horizon 2020 Research and Innovation Programme under grant agreement No. 101037031

Acknowledgments

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS



What's next?



Thank you for your attention

Thermal energy, fillers and pigments from wood packaging waste

#FRONTSH12

E-mail: vittoria.benedetti@unibz.it Lab website: https://bnb.groups.unibz.it/ Project website: https://frontsh1p.eu/

