

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21-24 June 2023

"Engine fuels production via hydrotreatment of hydrothermal liquefaction bio-crude oil and pyrolysis bio-oil"

A. Dimitriadis*, N. Tourlakidis, G. Meletidis, S. Bezergianni Centre for Research & Technology Hellas (CERTH), Chemical Process and Energy Resources Institute (CPERI) Thessaloniki, 57001, Greece (E-mail: adimitr@certh.gr)

YES or NO to Fuels?

- Fuels are interlinked with growth and development
 >Agriculture, industry, technology
- However, the increasing demand on fossil fuels has negative implications:
 - >Dependence from oil-producing countries
 - >Intense fluctuation of fuel prices
 - >Reduction of natural resources
 - >Green house effect & Climate change

Biofuels are Part of the Solution

Can boost national economy

- Create new employment opportunities
- >Reinforce other industries
 - >Sugar industry, Paper industry etc.

Can contribute to the reduction of atmospheric pollution

≻CO, SOx, HC, PM

Follows environmental EU commitment

Destilibertilibertilibertili

Paper, Kyoto Protocol (2012)
RedGreen, green house gas emissions
Reduction of total carbon footprint

Reduces dependence of oil imports

Countries can produce their own biofuels

Wheat Straw Waste

Wheat straw waste: Promising feedstock for 2nd generation biofuels production

Main Objective - Feedstocks

- Research target: " 2nd generation Engine fuel production"
- Two feedstocks were investigated

≻Pyrolysis bio-oil

≻HTL bio-crude

- Both oils produced from wheat straw wastes
- The Oils have different upgrading challenges

Ph	ner	lol	S

Carboxylic acids

Aldehydes

Ketones

Methoxyphenols

Pyrolysis bio-oil					Н
	Properties	Units	Pyrolysis bio-oil	HTL bio-crude	
	Density at 15°C	gr/ml	1.024	1.002	
	S on dry basis	wppm	596	175	
Al-	H on dry basis	wt%	6.50	8.38	
and a set of the loss	C on dry basis	wt%	42.13	55.87	
	O on dry basis	wt%	29.41	22.56	
	Viscosity at 40°C	cSts	156	NA	
	TAN	mgKOH/g	79.92	88.24	
	H2O dissolved	wt%	21.86	13.05	
	HHV	MJ/kg	20	27	
	Pour point	°C	-3	21	
	MCR	wt%	15.7	13	

HTL bio-crude

Experimental Procedure

- Hydrotreatment experiments were conducted in TRL 3
 HDT unit at CERTH
 - >Continuous flow
 - Capacity 60 ml/hr
- Commercial hydrotreating NiMo/γ-Al₂O₃ catalyst
- Effect of operating parameters
 - Reaction temperature
 - >H₂ supply

HDT Operating window tested

Parameters	Units	Cond. 1	Cond. 2	Cond. 3
Temperature	°C	330	360	330
Pressure	psi	1000	1000	1000
H ₂ /Oil ratio	scfb	5000	5000	3000
LHSV	hr⁻¹	1	1	1

TRL 3 Hydrotreating unit

Results – Elemental Composition

- Oxygenates were totally removed via aqueous phase
 >Organic phase have almost zero oxygen and water content
- Higher temperatures lead to higher aqueous phase yields
 More severe hydrodeoxygenation reactions
- HDT of bio-crude lead to higher organic yields compared to HDT of bio-oil

Properties	Units	Pyrolysis bio-oil	HTL bio-crude
Density at 15°C	gr/ml	0.91-0.94	0.84-0.87
S on dry basis	wppm	30-80	10-80
H on dry basis	wt%	11.3-11.7	12.5-13.4
C on dry basis	wt%	85.5-86.8	83.0-86.1
O on dry basis	wt%	1.70-2.99	0.00-3.34
Viscosity at 40°C	cSts	4.9-14.6	5.3-13.3
TAN	mgKOH/g	0.00-0.87	0.18-6.0
H2O dissolved	wt%	0.001-0.02	0.002-0.65
нну	MJ/kg	42.8-43.5	43.4-45.9
Organic phase	v/v %	65-70	59-70
Aqueous phase	v/v %	32-34	38-45

7

Results – Elemental Composition

- HDT increase the hydrogen content resulting in high energy organic product
 - >60% higher H content in bio-crude products
 - >79% higher H content in pyrolysis bio-oil products
- HDT Bio-crude has higher H/C ratio compared to HDT bio-oil
 - >HDT bio-crude higher energy content

 HDT of bio-oil has higher H₂ consumption compared to HDT of HTL bio-crude

Results - Mass recovery curve - Product Yields

- Instability of HTL bio-crude and pyrolysis bio-oil, is a result of their heavy hydrocarbon molecules
- Hydrocracking and saturation of these heavy molecules improve stability
- Increase of T, raise the rate of hydrocracking and H₂ consumption
- Gasoline and diesel range hydrocarbons are produced

• HTL bio-crude optimum condition 1

>10 wt% gasoline, 62 wt% Diesel and 28 wt% heavy fuel

Pyrolysis bio-oil optimum condition 2
 >20 wt% gasoline, 43 wt% diesel and 37 wt% heavy fuel

GC-MS Chromatograph Results HDT Bio-Crude

- HDT reduced the oxygen- and nitrogen-containing compounds
- Organic liquid consists mainly from:

≻~50 wt% n-paraffins and high percent of saturated (Naphthene 7.88 -11.94 wt%) and unsaturated (Olefines 2.29 - 3.67 wt%) hydrocarbons

Palmitic acid (CH3(CH2)14C00H) → Heptadecane (C17H36) Oleic acid (CH18H340) → Octadecane (C18H38)

Catalyst Deactivation

- Catalyst deactivation is mostly caused by cocking, sintering, poisoning and metal deposition
- Fast catalyst deactivation, expressed via DP build-up, was observed
- For HTL bio-crude: the DP build up produced linearly with time on stream, starting from the 2nd DOS
- For pyrolysis bio-oil, the DP was steady for 4 DOS and increased rapidly at the end of DOS 4

Conclusions

- Hydrotreatment of pyrolysis bio-oil has led to an almost zero oxygen and water content product with high energy density
- The carboxylic acids of HTL bio-crude, especially the palmitic and oleic, were fully converted to the corresponding Heptadecane and Octadecane hydrocarbons leading to an almost zero oxygenate product
- Hydrotreatment of HTL bio-crude is characterized by lower hydrogen consumption and higher carbon yields, compared to hydrotreatment of pyrolysis bio-oil
- Refinery intermediate products were successfully produced from both routes
- Hybrid fuels can be produced via co-processing of HDT oil with petroleum fractions

Summarize

Thank you for your attention

For more information:

Dr. Athanasios Dimitriadis adimitr@certh.gr Tel:+30-2310-498-348 | Fax:+30-2310-498-380

