

LIFE SOL-BRINE & LIFE BRINE-MINING

Prof. Maria Loizidou School of Chemical Engineering, NTUA mloiz@chemeng.ntua.gr

General problem of Brine Discharge & & Brine Treatment

Brine discharge problem

- Brine \rightarrow solution of high salt concentration (mainly NaCl)
- Produced → desalination plants, industry (chemical, coal mine, textiles, food etc)
- Brine discharge → Tones of salts and water are released to surface water bodies, sea or WWTP

Problems:

- Pollution of surface water bodies and sea (flora and fauna changes, limiting the possibility to use river or lake water for agricultural, industrial and municipal purposes creating social, environmental, economical problems)
- Salination of soils (agricultural problems)
- Degradation of underground water bodies
- Accumulation of chlorides and sulfates

Brine Treatment-Salt Recovery

- Tones of recovered salts could be reused by industry (some of them are in the EU list for Critical Raw Materials e.g Mg)
- Other valuable-high market price materials could be recovered apart from salts (such as biomolecules from food industry brines)
- Decrease of energy consumption and CO₂ emissions (less energy is used for the recovery of salts from brines compared to their conventional production)
- Millions of m³ water could be reused for agricultural, industry and municipal purposes
- Avoid water scarcity
- Better status of soil and water bodies

Innovative Projects for Brine Management to recover water and salts

Strategic Steps to be followed for Brine Management

Sol Brine-General Information

"Development of an advanced innovative energy autonomous system for the treatment of brine from seawater desalination plants"

Area of implementation: Tinos Island, Greece

Municipality of Tinos Island (Project Coordinator)

National Technical University of Athens

Culligan Hellas S.A.

Innovative aspects

- Brine production: from the desalination plant of Tinos Island
- **Total brine elimination:** The system has been designed in line with the Zero Liquid Discharge principle
- Water Recovery: (> 90%)
- **Production of useful end-products.** (a) water of high quality and (b) dry salt. Products with market opportunities.
- Energy autonomous operation: Solar thermal collectors are used for delivering hot water and a PV for electricity. All energy requirements are covered exclusively through the use of solar energy.
- Use of state-of the art technology: Custom designed vacuum evaporation technology (evaporator and crystallizer) and solar dryer.

Single Line Diagram

Sol Brine System

Evaporator

Crystallizer

Sol Brine System

Dryer

CSP

Sol Brine System

Site Visit

Sol Brine-EU Green Awards

The Best Life Project of last 25 years

LIFE Brine-Mining Project

Partners

Coordinating beneficiary

National Technical University of Athens

Beneficiaries

GLOWNY INSTYTUT GORNICTWA

LENNTECH WATER TREATMENT SolUTIONS LENNTECH

NEVIS-NOVEL Environmental Solutions S.A.

SEALEAU

Solutions S.A. SEALEAU B.V.

THERMOSSOL

Silesian University of Technology

POLSKA GRUPA GORNICZA

THERMOSSOL STEAMBOILERS S.A.

Titan Salt B.V.

Titan Projects B.V.

Coal mines closure & need for coal mine brine treatment

Decarbonization in Europe

The problem in Poland & the project target area

The problem in Poland

- Poland is the dominant producer of hard coal in EU
- Coal mines generate vast amounts of saline wastewater
- Direct or indirect drainage of these streams to water bodies
- Ecological Status of rivers: moderate
- Vistula River: 55% of fresh water in Poland
- Economic losses from Vistula salinization: 150-200 million \$ per year (losses in the transportation and the industrial and agricultural sector)

Coal mine brine discharge in the project's target area

- PGG is the owner of most of coal mines in Poland
- Million tonnes of brine are produced per year from the mining operation
- The high salinity brine is discharged in artificial ponds for the precipitation of salts and solids
- However, a great amount of salts end up to the Vistula River, causing the river degradation

The Ziemowit coal mine, which belongs to PGG

The project target area

The project target area: The Goławiecki Stream and the Small Vistula River

Coal mine brine discharge in the project target area

Result of coal mine brine discharge in the Stream and the River

- □ National Monitoring Report (2019): Bad Water Condition
- □ High content of chlorides, sodium ions and sulfates
- □ The Goławiecki Stream's conductivity reaches the level of seawater
- ➡ High level of K⁺, Br⁻, Sr, Mn⁺², B, HCO₃⁻: all these ions are associated with produced wastewater from coal mine operations

The pilot system units

Project area implementation

Map of the Brine-Mining site in the area of the Ziemowit mine

Photo of the Brine-Mining containerized technologies in the area of the Ziemowit mine

Technologies Applied

Ultrafiltration: Removal of the brine suspended solids

- Precipitation: Precipitation of the minerals (Mg, Ca) using chemical solutions
- Nanofiltration: Separation of monovalent ions (Cl⁻, Na⁺, K⁺) from divalent ions (SO₄⁻²)

Electrodialysis: Concentration of NaCl in the NF permeate from 9% to 15%

Technologies Applied

Reverse Osmosis: From the RO, clean water is recovered while the concentrate is mixed with the ED inflow

Evaporation - crystallization: The evaporator concentrates NaCl from 15% to solid form

LIFE Brine-Mining pilot system installation

Ultrafiltration

Precipitation tanks

Nanofiltration, Electrodialysis and Reverse Osmosis

Co-funded by the European Union

The pilot system performance

Process Flow Diagram

Process Flow Diagram of the Prototype System

Precipitation Reactors operation performance

Nanofiltration and Electrodialysis operation performance

2 times condensation in Electrodialysis

Co-funded by the European Union

Reverse Osmosis operation performance

Pilot system operation performance

The Brine-Mining Circular Economy Concept & Expected Results

LIFE Brine-Mining: Circular Economy Concept

LIFE Brine-Mining: From coal mine brine to marketable minerals, salts and water

Recovery of minerals, salts and water from coal mine brine desalination. Use in the agricultural, the municipal and the industrial sector. Rise in the revenues of the coal mine from the recovered materials exploitation

LIFE Brine-Mining full-scale implementation expected results

1. Prevention of brine discharge

Avoiddischargeof8,872,500m³brineperyear into surface water

2. Recovery of clean water

Recovery of 7,328,685 tones of clean water per year

3. Production of minerals/salts

546,800 tones of minerals/salts will be produced per year

LIFE Brine-Mining full-scale implementation expected results

4. Salts of high purity

Production of 39,293 tones Mg(OH)₂: 91% purity
 Production of 58,559 tones CaCO₃: 98% purity
 Production of 29,913 tones CaSO₄: 91% purity
 Production of 435,000 tones NaCl: 98% purity

Project's Benefits

Economic Benefits

Job opportunities will be offered to new professionals The recovered materials will be promoted to the industrial market, boosting the coal mine income At the same time, the recovered materials prices will be lower than the ones produced conventionally, making them more attractive to the market The coal mine sector will save money by paying less fees to the government, due to less discharged brine in the aquatic environment

Co-funded by the European Union

Project's Benefits Social Benefits

Incentives for local job opportunities, as more mines can follow the Ziemowit mine initiative The recovered clean water can be used for municipal purposes, like irrigation of playgrounds

Rise of the environmental profile and status of the area, where the mine is located

Public health protection

LIFE SOL-BRINE & LIFE BRINE-MINING

Thank you for your attention

Prof. Maria Loizidou School of Chemical Engineering, NTUA <u>mloiz@chemeng.ntua.gr</u>

LIFE BRINE-MINING website: https://brinemining.eu/en/home/

