

LIFE20 ENV/CY/000615 LIFE Environment and Resource Efficiency project

Demonstration of an innovative method for the detoxification of pharmaceutical wastewater from pharmaceutical facilities

Maria Kyriazi kyriazimaria@mail.ntua.gr, Eleni Giouni

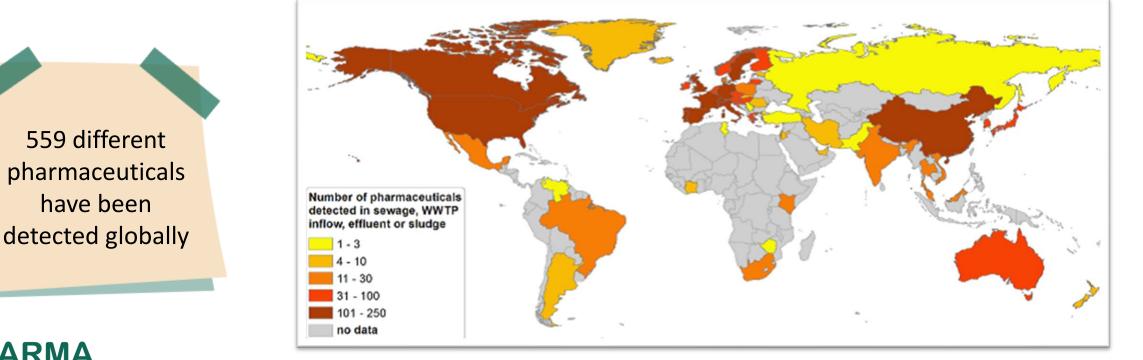
Unit of Environmental Science and Technology School of Chemical Engineering National Technical University of Athens, Greece

PHARMA DETOX-General Information

Area of implementation: Limassol Cyprus, Duiven Netherlands

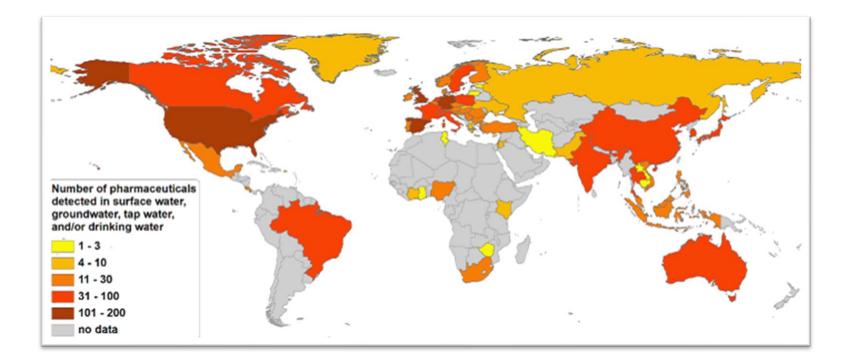
Coordinating Beneficiary:

Associated Beneficiaries:



Pharmaceuticals in the environment

Many studies on soil, animals, fish, and water have shown the accumulation of Active Pharmaceutical Ingredients (APIs)


Pharmaceuticals in the environment: Global occurrence and potential cooperative action under the Strategic Approach to International Chemicals Management (SAICM), Axel Bergmann,

Pharmaceuticals in the environment

200 different pharmaceutical substances found in surface, ground and even drinking water

PHARMA

Over 100,000 tonnes of pharmaceutical products are consumed globally every year (24% in Europe).

Pharmaceuticals in the environment: Global occurrence and potential cooperative action under the Strategic Approach to International Chemicals Management (SAICM), Axel Bergmann,

Active Pharmaceutical Ingredients in Water and Soil

Contamination by APIs can occur through three different pathways:

- Wastewater of Pharmaceutical Industry (manufacture)
- Excretion of pharmaceuticals from animals and humans (use)
- Improper disposal of expired medicines (disposal)

Data* from 264 WWTPs:

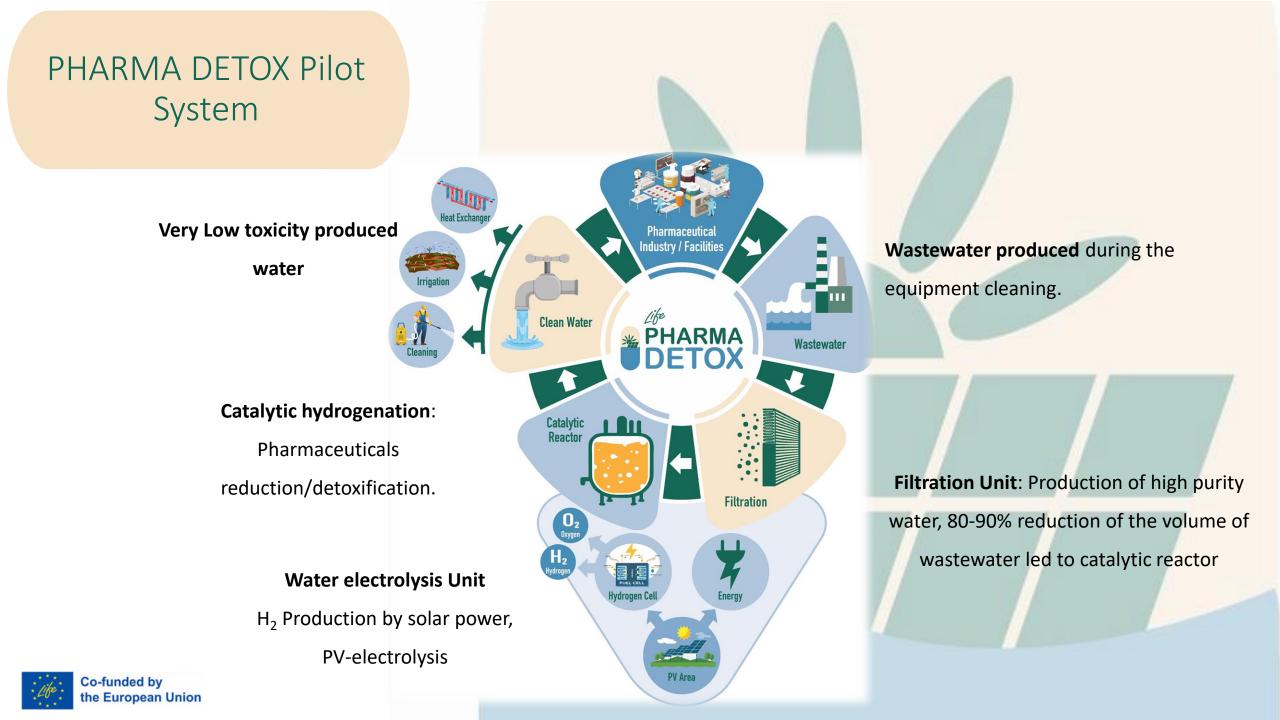
Removal percentage of APIs from

wastewater treatment was lower than 10%

Bioaccumulation of non-biodegradable APIs can cause

- Antimicrobial resistance
- Endocrine system-disruption
- Negative effects on aquatic life and plants

PHARMA DETOX Project Objectives



Pharma-Detox project aims to the development and implementation of an innovative, economically viable, and cost-efficient system for the transformation of pharmaceutical compounds, present in wastewater, into non-toxic substances.

- The prototype system will be installed at Medochemie Ltd. located in Limassol, Cyprus.
- Medochemie Ltd. has many facilities in Cyprus, the Netherlands and Vietnam.
- The 2nd demonstration phase will take place in the Farmaceutisch Analytisch Laboratorium Duiven B.V., the Netherlands.

PHARMA DETOX Expected Results

- Avoid Active Pharmaceutical Ingredients (APIs)
 release in the wastewater sewage system
- Convert 1,606 kg of APIs to nontoxic compounds.
- ✓ Save 3,650 m³ of potable water annually.
- ✓ Reuse and Recycle clean water for irrigation or cleaning purposes or use in cooling systems.
- Minimize the system's environmental footprint using 100% renewable energy sources and no chemicals.

- ✓ Transfer the project's results to other pharmaceutical companies across Europe.
- Communicate and promote public awareness at local and regional level
- ✓ Draft policy recommendations to the EU
- Market exploitation of the system in EU industries and globally

Concentration of APIs in Wastewater

ΑΡΙ	Concentration of API in wastewater (µg/L)	Lowest Value of PNEC- ENV and PNEC-MIC (µg/L)
Amikacin	-	16.00
Amoxicillin	3-67 (Oral) 2,140,000-2,330,000 (Injectable)	0.25
Cloxacillin	3,573,000	0.13
Lincomycin	1,530,000	0.81

Concentration of API in wastewater (µg/L)	PNEC (µg/L)
17,500	2.50
88,000	8.72
55,400 (Oral)	56
2,240,000 (Injectable)	
71,000	0.05
	wastewater (μg/L) 17,500 88,000 55,400 (Oral) 2,240,000 (Injectable)

PNEC-ENV: Predicted No-Effect
Concentrations for the environment
(no eco-toxicology)
PNEC-MIC: refers only to antibiotics,
Minimum Inhibitory Concentration (no AMR)

Main physicochemical parameters of Wastewater streams

Ampoule Injectable Facility Line 1 and 2

pH: 4.6-7

Conductivity: 38-492 μ S/cm

Cl⁻: 27-124 mg/l

COD: 2,899 mg/l –38 mg/l

Oral Penicillin Facility

pH: 8.5

Conductivity: 140-1,051 μ S/cm

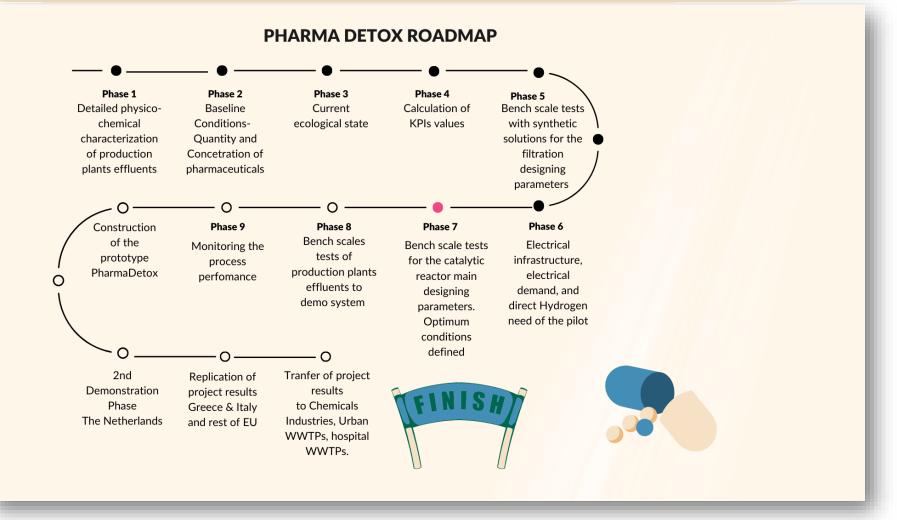
Cl⁻: 100mg/l

COD: 2,583 mg/l -343 mg/l

pH: 6.5-8.5 Conductivity: 814-2,210 µS/cm Cl⁻: 8-1,365 mg/l COD: 12,207mg/- 2,497 mg/l

Bench Scale Tests

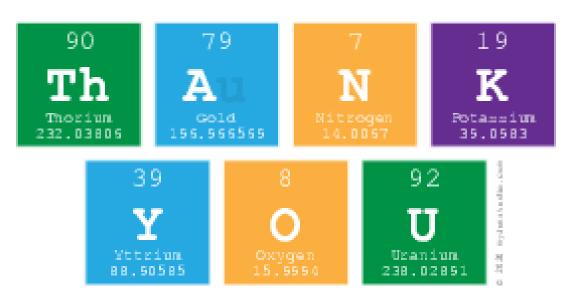
Hydrogenation Catalytic Reactor operational parameters:


- ✓ Gaseous phase 95 vol. % $H_2/5$ vol. % O_2 , (120 cc/min flow)
- ✓ 1 wt. % Rh on Al_2O_3
- ✓ Continuous flow at 1.3 atm total pressure and 25 °C

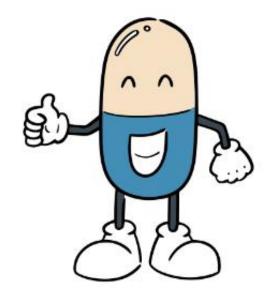
According to the first bench scale tests

- **Conversion** of drugs (in 95 vol. % H_2) >90%
- **Toxicity of solution decreases** to very low levels

Progress and Next Steps



LIFE20 ENV/CY/000615 LIFE Environment and Resource Efficiency project


Stay Updated on PHARMA DETOX News and Events Visit our Website

www.pharmadetox.eu

Connect with us on Social Media

