

Optimization of Pulsed Electric Fields-Assisted Extraction of phenolic compounds from sweet cherry press cake using **Response Surface Methodology** • University of Salerno – Department of Industrial Engineering

• Ph. D. course in Innovative Engineering Technologies for Industrial Sustainability (IETIS)

Supervisors: Prof. Giovanna Ferrari Prof. Gianpiero Pataro

VALICET enhancing foods

Ph.D. student: **Ervehe Rrucaj** errucaj@unisa.it

Horizon 2020 **European Union Funding** for Research & Innovation

Ministero dell'Universita e della Ricerca

INTRODUCTION

STATE OF THE ART

OBJECTIVE OF THE WORK

RESULTS

INTRODUCTION

Consumer food trends

Nutrient-rich diet

Economic

Health/Nutrition

Environmental impact

Food waste and by-products: a low-cost source of bioactive compounds

annually in the EU

42% Households ŵ

39% Manufacturing

m

14% Foodservice/Catering

5% Retail/ wholesale

Cherry production

World Cherry Production by Country (USDA, 2022).

531.37K

398.53K

265.68K

132.84K

Italy is the third largest cherry producer in the Mediterranean region with 98,600 tonnes production per year.

Pomace

Seeds

Industry (Cherry juice production)

Cherry production

The nutritional composition

Stems

> Dietary fiber: lignin (69.4%), cellulose (18.4%), hemicellulose (10.7%), and pectin (1.5%). ≻ Vitamin C ➢ Potassium

Cyanidin 3-glucoside, cyanidin 3rutinoside (soluble in aqueous/organic solvent mixture).

Phenolic acids

Neochlorogenic acid, chlorogenic acid, 4-p coumaroylquinic acids, 3,5-di-caffeoylquinic acid (soluble in ethanol)

STATE OF THE ART

Bio-conversion of food waste and their products

(Yukesh Kannah et al., 2020)

Extraction Conditions

Dipartimento di Ingegneria Industria

Solvent

- "Low" of similarity and intervisibility
- Solvent Polarity Chart
- > Polar
- > Non-polar
- Green Solvent
- Low cost •
- Recycle •
- Non-toxic •
- Non-flammable •••

Extraction Process

Extraction Conditions

Conventional extraction methods

Procedure

Extraction

Treatment Chamber

```
Input variables
  •E (kV/cm)
•W<sub>T</sub> (kJ/kg)
```


Procedure

Cell membrane

Cell before PEF application

Electroporation phenomenon

OBJECTIVE OF THE WORK

The Objectives of the Work

Response surface for two factors (X₁ and X₂)

- Input variables
- Time = (30 360 min)
- Temperature = $(20-50 \circ C)$
- Solvent = ethanol-water mixture (0-100%)

Optimization of the SLE conditions Response surface methodology (RSM)

 $\mathbf{Yk} = \beta \mathbf{0} + \sum_{i=1}^{2} \beta_{i} X_{i} + \sum_{i=1}^{2} \beta_{ii} X_{i}^{2} + \sum_{i=1}^{2} \sum_{j=i+1}^{3} \beta_{ij} X_{i} X_{j}$

Potentially of PEF pre-treatment to enhance cherry press cake's ability to extract bioactive components

RESULTS

Sweet cherry "Ferrovia" Variety

(Pataro et al., 2017): PEF pre-treatments were performed at constant specific energy input (WT = 10 kJ/kg) and different electric field strengths (E = 0.5-3 kV/cm) before applying a pressure of 1.64 bar for 5 min.

Work Plan

Yk: predicted response variables; Xi and Xj: independent variables; a0, ai, aii, aij, aiij, and aijj: intercept, regression coefficients of the linear, quadratic, and interaction terms of the model, respectively $Y_k = \alpha_0 + \sum_{i=1}^3 \alpha_i X_i + \sum_{i=1}^3 \alpha_{ii} X_i^2 + \sum_{i=1}^3 \sum_{j=i+1}^4 \alpha_{ij} X_i X_j + \sum_{i=1}^3 \sum_{j=i+2}^5 \alpha_{ij} X_i X_j + \sum_{i=1}^3 \alpha_{iii} X_i^3 + \sum_{i=1}^3 \sum_{j=i+1}^4 \alpha_{iij} X_i^2 X_j + \sum_{i=1}^3 \sum_{j=i+1}^4 \alpha_{ijj} X_i X_j^2$

Runs Variables							PEF- assisted extraction			
Coofficiente		E	t S/L	SLE	FC		FRAP (mg AAE/oDw)	BEE-assisted	l extraction	
Coemcients	50	50 3	TAC	(mg GAE əş E w) 2.24 57+0 06a	FRAP	<u>(mg C3G/gDw)</u> 2.16+0.02a	246 39+0 06 F	FEF-assisted	FI 390 77+0 07b	AP 5 11+0 07b
2 20 $(mgG3G/g)$		ngC3G/gow)	135.44±0.06a	$6a = 151 (mgAAE/g_{DW}) = 1.74\pm0.01a$		$149.24 (mgG3G/g_{DW})$ 65±0.03b		$226.03 (mgAAE/g_{DW})$		
ft	20	+5,9569	G CAL/ SDW)	697.49±0.03a	+259-105-308-54073	14.42±0.02a	+3038395	5.42±0.04b	±198.268	E' 2007 1±0.04b
₿. <mark>(Ţ</mark>)		-0.05528	ğ O	.0456	-17.91085	** ^{7±0.03a}	+0.287320 -23.2728	327 ** 0.040	-28,0091	6.16±0 * **
B. (E.W %)	25	$-0_{4}0_{2}4_{1}3$	$\mathbf{\hat{h}}_{5}^{0} = 0.05$	***	-9-1.64473	***	+0.074419	***	-0.457285	***
	2.0	-82,667.9	2 0.2	***	‡6 <u>3.48</u> 101	***	+12529695	***	‡1514:51	***
	20	+0.2606	l ² 1 0.05	**** *********************************	+0.937563	*** 9±0.01a	+0.015500	40.*** 0.001b	+0.786917	0.25±***
₩2 (1×±-₩)		+0.0508	0 0.2	ns ns 76.86±0.01a	+0.020603	ns 0±0.03a	+0.999748	244.80±0.02b	+0.098691	4.28±0.01b
¹ ¹ ² / ³ / ¹	50	+0.17942	21 0.125	ns.34.15±0,02a	-09178920 -9.00317	n§ 9±0.06a		522. HS ±0.02b	-18-080-6	8.94±0 .8 3b
	35	+0.52007	0.125	ns96.29±0.03a	+2.61471	$\frac{1}{10}$ 3±0.01a	キャンシャッシュ	173. HS ±0.05b	+0.000247	1.82±(]] §1b
B3 (E-W X S/I	3 50	+0.00041	2 0.05	ns 9.53±0.002a	∓9.98320 ►0.012425	HS 7±0.07a	+0.000246	57.7 ns 0.003b	-7:23572	2.52±(<u>H</u> §4b
B ²⁴ (E-W X Y) B ²⁴ (S/L x t)	20	+0.02175	52 0.05 8 0.2	**************************************	+0.013378 +1.05870	***)±0.02a	+0:027195	137 **+0 02b	+0:013413 +1 77216	1.26+(ns 1b
		+2.1255 +0.00143	3. 0.05	ns 72.49±0.03a -	+0.537662		-0.002847	ns 969 ns±0.03b	+1:32383 +0.439359	1.20 HS
β_{n_2} (F W/ X F W	20	+0.25773 +0.00034	۶ <u>4</u> روم 0.05	ns ns151.49±0.04a -	+0.301853 +Q.Q49488=0.07a	0.0223 ns 5±0.01a	+0.352478	$162.ns \pm 0.05b$	+0.129137 +0.084158	2.09±0 ns 3b
B ₂₂ B ₃₃ (S/J x S/J	35	+0.05726 +28033	0.125	ns ns 74.32+0.09a	-1.007623 -1.05759316	ns ns 2+0.01a	+571,211	265.**±0.07b	-17286,8	3.75+***b
	750			ns 00.52±0.002a	-TI TITITIA 72	ns	-0.00027	1129 ns 003b	-2373.49 0.002279 -n.nnt349	20 77 115
The p-value of	f 35	≤ 0.000	1 sig	nificant nificant	< 0.0001	significant	≤ 8:8881	significant	≤ 8:8881	significan
the model			95 0.1258	247.39±0.03a		2.17±0.03a		327.49±0.04b		6.16±0.03b
\mathbf{R}^2	50	0.968	30 0.2	109.66±0.08a	0.945 41±0.05a	1.58±0.04a	8:937 0.02	136.25±0.09b	174.8:98406b	2.32±0.01b
RMISE		20:0853			6.857 43±0.07a		2 8:3980 .007a		421 8:297 05b	
27	20	25 1	05 0.120	227.30±0.43a 380.28+0.07a	220.37±0.001a	5.7/+0.01a	221.00±0.009a 3/13 03+0 08a	164 46+0 00b	30/ 57+0.07b	8.37+0.00b
26	35	25 1	95 0.125	247.39±0.03a	235.29±0.02a	2.17±0.03a	223.42±0.003a	327.49±0.04b	382.28±0.09b	6.16±0.03b
27	20	50 3	60 0.05	460.57±0.01a	415.05±0.19a	4.29±0.4a	486.12±0.003a	494.01±0.01b	576.84±0.08b	6.14±0.06b
			60 0.2	274.26±0.01a	271.99±0.06a	4.00±0.06a	277.55±0.09a	320.21±0.09b	363.74±0.69b	10.19±0.02b

Total phenolic compounds (TPC)

3D Response Surface graphs

Control $T = 35^{\circ} C$ PEF

Control

 $T = 50^{\circ} C$

PEF

าล

Flavonoids Content (FC) 3D Response Surface graphs

Control

 $T = 50^{\circ} C$

PEF

Anthocyanins Content (FC) 3D Response Surface graphs

 $T = 35^{\circ} C$ Control

Antioxidant Activity (FRAP) 3D Response Surface graphs

 a)

³⁰⁵250

Time (min)

FRAP (mgAAE/gDW)

Pulsed Electric Fields (PEF): Sweet cherry press cake

Response variables at the optimal PEF-assisted extraction conditions

Response	Ethanol –Water		Temperature		Ti	Time		/L	Increment ove SLE [%]	
	SLE	PEF	SLE	PEF	SLE	PEF	SLE	PEF	PEF	
TPC (mgGAE/g _{DW})	50	49	50	50	360	360	0.2	0.2	+26	
FC (mgQE/g _{DW})	50	50	50	48	360	356	0.2	0.2	+27	
AC (mgC3G/g _{DW})	50	50	50	50	360	360	0.2	0.2	+42	
FRAP (mgAAE/g _{DW})	50	50	50	50	360	342	0.2	0.17	+44	

<u>Selected overall optimal extraction conditions:</u> EtOH-Water = 50 % (v/v), T = 50 °C, Time = 360 min, S/L= 0.2

Extraction time **(4-18 min)** Solid/ liquid ratio **2%**

er

Pulsed Electric Fields (PEF): Sweet cherry press cake

40

HPLC-PDA analysis: effect of PEF pre-treatment on the phenolic composition

Compound (mg/L)	Concer (mg/s	Increment (%)	
	Control	PEF	
Neochlorogenic acid	0.085	0.276	+224.7
Chlorogenic acid	0.019	0.059	+210.5
4-p-coumaroylquinic acid	0.01	0.061	+510
Cyanidin 3-glucoside	0.009	0.038	+322.2
Cyanidin 3-rutinoside	0.087	0.283	+225.3
3,5-dicaffeoylquinic acid	0.016	0.065	+306.3
Rutin	0.032	0.164	+412.5

PEF is effective in intensifying the recovery yield of total **polyphenols** content (+26%), flavonoids (+27%), anthocyanin content (+42%). and antioxidant power (+44%), from the sweet cherry press cake

Higher release of different phenolic compounds, including **Cyanidin 3-glucoside** (+322.2%), and Cyanidin 3-rutinoside (+225.3%) upon PEF compared to the control.

Optimization step: The variables were significant, and the model accurately predicted the investigated responses for both PEF treatment and extraction step

> Has the potential to **reduce the** solid/liquid ratio (2%) and shorten the extraction time (18 min) to achieve the same recovery yield of phenolic compounds

> > No degradation phenomenon was observed.

Questions, ideas, and suggestions suggestion are welcome errucaj@unisa.it