D. Zentelis, N. Kotrotsos, D. P. Zagklis, V. Sygouni, F. N. Lamari, C.A. Paraskeva, Isolation of high-added-value products from grape marc of the plant Vitis vinifera L., FORTH/ICEHT, PATRAS, GREECE

AKNOWLEDGEMENT

We acknowledge the support of this work by the Project "PPP_Phenolics" (code 03828), which is implemented under the Action "**2nd Call for H.F.R.I. Research Projects** to support Faculty Members and Researchers" funded by **Hellenic Foundation for Research and Innovation.**

Isolation of high-added-value products from grape marc of the plant *Vitis vinifera* L.

A. D. Zentelis^{1,2}, N. Kotrotsos³, D. P. Zagklis³, V. Sygouni^{1,3}, F. N. Lamari^{1,2}, C.A. Paraskeva^{1,3,*}

¹Foundation for Research and Technology, Hellas, Institute of Chemical Engineering Sciences,

FORTH/ICE-HT, GR-26504 Patras, Greece

² Department of Pharmacy, University of Patras, Greece ³Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

Keywords: phenolics, isolations, membranes, extraction.

Presenting author email: takisp@chemeng.upatras.gr

'A complete exploitation of agricultural wastes: Isolation of organic compounds with high added values'

Agro-industrial wastes

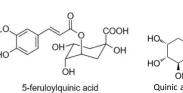
- Sugar industry
 - Sugar Beet pulp → molasses for animal nutrition.
- Fruits and vegetables
 - Pulp after juice extraction (citrus, apples, tomatoes etc.) → pectin from apple pomace, tomato pomace as animal feed, etc.
 - Coffee beverages
 - Tomato juices
- Vinification
 - Defective wine, grape marc→ alcohol rich solutions production, separation of phenolic content from solids.
- Olive oil production
 - Olive mill wastewater (3-phase extraction)→ separation of phenolic content, fertilizer, biological herbicide, animal feed.

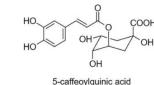
'A complete exploitation of agricultural wastes: Isolation of organic compounds with high added values'

Scope

- Large amounts of agricultural by-products are produced every year, some of them rich in phenolic compounds.
- Phenols are antioxidants with high-added value and positive effects to the human health.
- Their separation to produce cosmetic products, food supplements etc., is of great interest.
- For this purpose, a combination of solid-liquid extraction, membrane filtration, liquid-liquid extraction, resin adsorption/desorption following by evaporation and freeze drying is proposed, to produce phenolic concentrates.
- The final products of the proposed process contain a large percentage of the by-products' phenolic content, in a small fraction of the initial volume.
- This technique, after modification, can be applied to a variety of phenol-rich by-products, allowing the operation of phenol separation plant adjustable to local agricultural activities.

5


'A complete exploitation of agricultural wastes: Isolation of organic compounds with high added values'


 Idea: To develop a method for the for maximum, cost-effective exploitation of agro-industrial wastewaters, using a combined process of membrane filtration and other physicochemical processes.

- **EFFECTIVE TREATMENT OF AGROINDUSTRIAL LIQUID AND SOLID WASTES** (Environment). What we have tested so far...
 - OMW (3phase)
 - Pomace or Alperujo (2phase)
 - Olive leaves
 - Winery by-products
 - Coffee by-products
 - Tomato by-products
- ISOLATION OF PHENOLS, COMPOUNDS WITH HIGH ADDED VALUE (Profit). What have isolated and purified so far...
 - Hydroxytyrosol, Tyrosol (Olive mill wastewaters)
 - Oleuropein (olive leaves)
 - trans-Resveratrol, catechins (Winery by-products)
 - Chlorogenic acid, caffeoylquinic acids, dicaffeoylquinic acids and ferruloylquinic Derivatives of chlorogenic acid acids, (coffee by-products)-COFFECO & COFFEE ISLAND, spin-off company
 - Lycopene (tomatoes)

3 4-dicaffeovlouinic ac

Part D: Winery by-products

Isolation of high-added-value products from grape marc of the plant *Vitis vinifera* **L.** INTRODUCTION

During vinification and the treatment of *Vitis vinifera L*. species fruits, by-products such as grape marc and wine bottom sludges are produced in large quantities.

The high organic load contained in the grapes, combined with the large amounts produced every year, make necessary their treatment before its disposal to the environment.

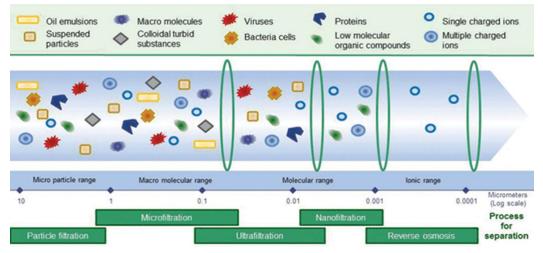
On the other hand, (the toxicity of grape by-products in the environment) is attributed to their high content in phenolics, known for their high antioxidant activity.

Several treatment techniques, including physicochemical processes, are used to reduce the organic load of grape by-products) with simultaneous isolation of phenolic compounds, which are of high interest and high added value for cosmetic industry, food industry and pharmaceutics.

Isolation of high-added-value products from grape marc of the plant Vitis vinifera L.

Scope

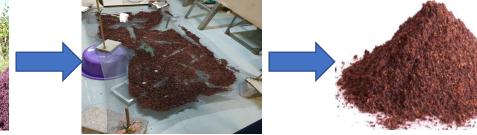
The present work is focused on the experimental investigation of the parameters during the extraction of phenolic compounds from grape marc Merlot variety), minimizing the amount of extracted carbohydrates.


The experimental results obtained from the parametric analysis of the extraction process, were tested in a pilot scale experiments using a membrane system consisting of an Ultrafiltration (UF), two Nanofiltration (NF), and a Reverse Osmosis (RO) membranes.

More specifically, the product obtained from the extraction, was further treated with the pilot-scale membrane system and the final product was characterized considering its Total Phenolic Content (TPC), Total Sugar Content (TSC) and antioxidant capacity with the FRAP method. In addition, a qualitative analysis of the fractions was carried out using LC-MS.

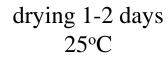
Membrane filtration processes

Separation depends on pore size, Molecular weight cut-off, (MWCO)


Low Energy ConsumptionLow selectivityReadily combined with other physicochemical processesShort lifetimephysicochemical processesFouling effects and polarization concentrationKasy to modify and adjustFouling effects and polarization concentrationAutomationSensitivity to mechanical resistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COSTNo additional provisions areInstallation on an industrial scale	Advantages	Disadvantages
Short lifetimephysicochemical processesEasy to modify and adjust variablesFouling effects and polarization concentrationAutomationSensitivity to mechanical resistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	Low Energy Consumption	Low selectivity
physicochemical processesEasy to modify and adjust variablesFouling effects and polarization concentrationAutomationSensitivity to mechanical resistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	Readily combined with other	
variablesconcentrationAutomationSensitivity to mechanical resistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	physicochemical processes	Short lifetime
AutomationSensitivity to mechanical resistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	Easy to modify and adjust	Fouling effects and polarization
AutomationresistancesInstallation on an industrial scaleLow permeate flowratesLow Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	variables	concentration
Installation on an industrial scaleLow permeate flowratesLow Temperature conditions, noNon-resistance to all chemicalsphase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	A <i>i i i</i>	Sensitivity to mechanical
Low Temperature conditions, no phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	Automation	resistances
phase changesNon-resistance to all chemicalsApplication in many fields (food, juice, chemical industry)? COST	Installation on an industrial scale	Low permeate flowrates
Application in many fields (food, ? COST juice, chemical industry)	Low Temperature conditions, no	
juice, chemical industry)	phase changes	Non-resistance to all chemicals
juice, chemical industry)		
	Application in many fields (food,	? COST
No additional provisions are	juice, chemical industry)	
	No additional provisions are	
required	required	

Preparation of the raw material

- Grape marc- Variety of Merlot ٠
- Harvesting period, August 2019– C. Achaia ٠
- OINIKI- George Karelas, K. Achaia ٠
- I. Kotrotsos, Vasiliko, Achaias ٠



Grape marc (Merlot)

Natural drying (3 days), RT

Grape marc, Grinded and dried

Extraction Condition- parameter values

Conditions: > Solvent type

Solid/liquid ratio (w/v)

- TemperatureDuration of the extraction
- a) Solvents: Water, ethanol (EtOH), acetone, Polyethylene glycol (PEG), ethyl acetate,

	Parameter Values					
SolventRatio (w/v) TimeTemperatureOther Parameter						
any	1/10	60 min	RT	-		

- aqueous solutions of the above organic solvents (50-50 %)

b) Solid/liquid ratio (w/v): 1/5 (w/v), 1/10 (w/v)

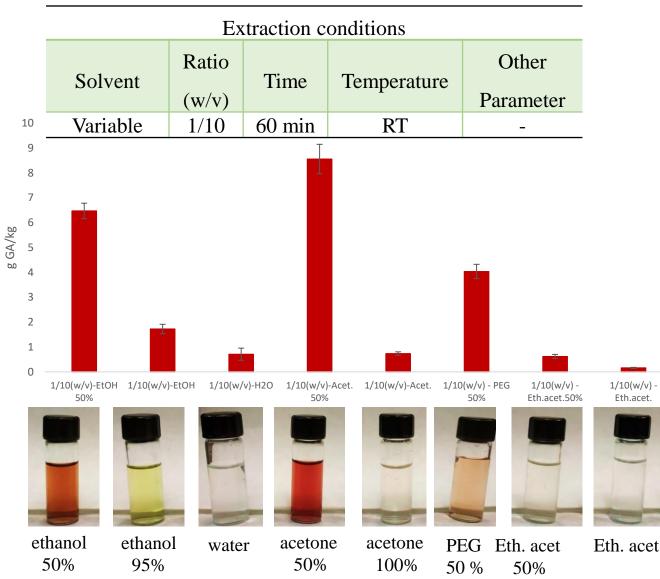
Extraction conditions					
Solvent Ratio (w/v) Time Temperature Other Parameter					
Water	Variable	60 min	RT	1/5, 1/10 (w/v)	
EtOH 50%	Variable	60 min	RT	1/5, 1/10 (w/v)	

c) Extraction duration

Extraction conditions					
Solvent Ratio (w/v) Time Temperature Other Parameter					
Water	1/5	Variable	RT	10, 30, 60 min	
Water	1/10	Variable	RT	10, 30, 60 min	

d) Temperature

Extraction conditions					
Solvent	Temperature	Other			
Solvent	(w/v)	Time	Temperature	Parameter	
Water	1/5	60 min	X7 · 11	10, 25, 40,	
water	1/3		Variable	50 and 60°C	

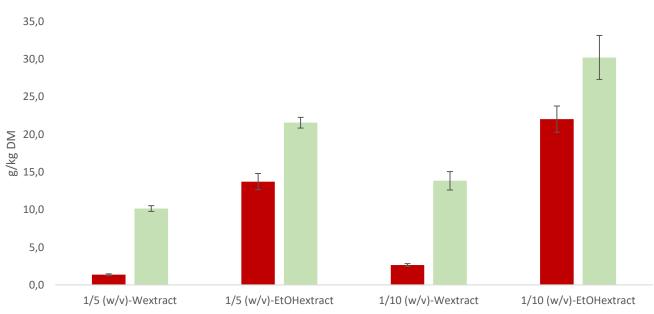

In all studies the resulting extract was first filtered through a series of sieves and finally processed by centrifugation to remove any suspended particles

Grape marc - Chemical composition and applications \sim

_

			Chemical composition of Merlot grape marc		
			Moisture 55-75%	Carbohydrates 17-29%	
		gallic acid	Fats 7.1-11.4%	Total Phenolic Content, TPC, 3.6 – 4.7%	
	Phenolic acids	Syringic acid	Proteins 6-10%	Fibers 43-75%	
		p-coumaric acid	Ashes 4.5-6.1%		
DM	Flavan-3-ols	 (+)-catechin (-)-epicatechin (-)-epicatechin 	Application sectors	Use	
	gallate	Livestock	Animal feed		
.6-4.7%		Malvidin-3-O-glycoside	Agriculture	Fertilizers	
4.		Delphinidin-3-O-glycoside	Alcohol Distillery	Alcohol and alcoholic beverages	
TPC 3.6-	Anthocyanidins Cyanidin-3-O-glycoside Peonidin-3-Oglycoside	Food Industry	As functional foods, Food supplements Preservatives, Increasing the added value of food		
	Stilbenes	trans-resveratrol		011000	
	Procyanidins	Procyanidin dimers	Pharmaceutical industry	Supplements	
	(tannins)	Procyanidin trimers	Cosmetics	Improvement of intestinal flora Cosmetics	
	Flavones	Quercetin	Gastronomy	Oils	
	Flavories	Kaempferol	Coloring	Pigments	

a) Solvent


Values of TPC (g GAE/kg)

Acetone 50% $(8.56 \pm 0.59 \text{ g GAE/kg})$ Ethanol 50% $(6.46 \pm 0.31 \text{ g/kg DM})$ PEG 50% $(4.03 \pm 0.28 \text{ g GAE/kg})$ Acetone 100% $(0.74 \pm 0.7 \text{ g/kg})$ Ethanol 95%(1.73 g GAE/kg)water $(0.71 \pm 0.4 \text{ g GAE/kg})$

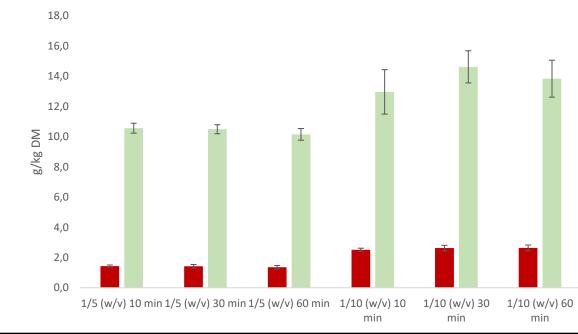
- ➤ Max. acetone 50% & ethanol 50%
- Min. Eth. Acet. & water
- > The presence of water enhances extractability
- ➢ Color → proportional to TPC content
- ➢ Green color → Chlorophyll

Acetone=> not suitable for membranes

b) Solid/liquid ratio (w/v)

(m/m)	TPC	TSC	Ratio	Volume
(W/V)	(g GAE/kg DM)	(g GLU/kg DM)	TSC/TPC	loss (%)
$1/5 (w/v) - W_{extract}$	1.36 ± 0.12	10.15 ± 0,39	7.4	36.6
1/10 (w/v) - W _{extract}	$2,64 \pm 0,19$	13.83 ± 1.22	5.2	22.0
1/5 (w/v) - EtOH _{extract}	$13,72 \pm 1,08$	21.54 ± 0.71	1.5	48.0
1/10 (w/v) -EtOH _{extract}	22.01 ± 1.74	30.21 ± 2.92	1.3	25.3

Extraction conditions				
Solvent	Ratio	Temperat	Other	
Solvent	(w/v)	Time	ure	Parameter
Water	Variable	60 min	RT	-
EtOH 50%	Variable	60 min	RT	_


Ethanolic extractions:
 High extractability of TPC,
 Good ratio of TSC/TPC.
 A solid/liquid ratio of 1/10 (w/v) leads to further TPC extraction

A solid/liquid ratio of 1/5 results in a large volume loss

Aqueous extractions

Low extractability of TPC, High extractability of TSC No significant differences are observed between the ext. with S/L ratio of 1/5 and 1/10 (w/v).

The S/L ratio 1/5 shows the smallest TPC extractability

c) Duration of extraction

	Extraction conditions					
Solvent	Ratio Temperatu Other					
	(w/v)		re	Parameter		
Water	1/5	Variable	RT	-		
Water	1/10	Variable	RT	-		

Duration times in each ratio (w/v) appear similar In terms of TSC and TPC level


> The TSC/TPC ratio in the extraction 1/5 (w/v) > 1/10 (w/v)

▶ Extraction of TPC increases from $1/5 (w/v) \rightarrow 1/10 (w/v) 100\%$

► Extraction of TSC increases from $1/5 (w/v) \rightarrow 1/10 (w/v) 35\%$

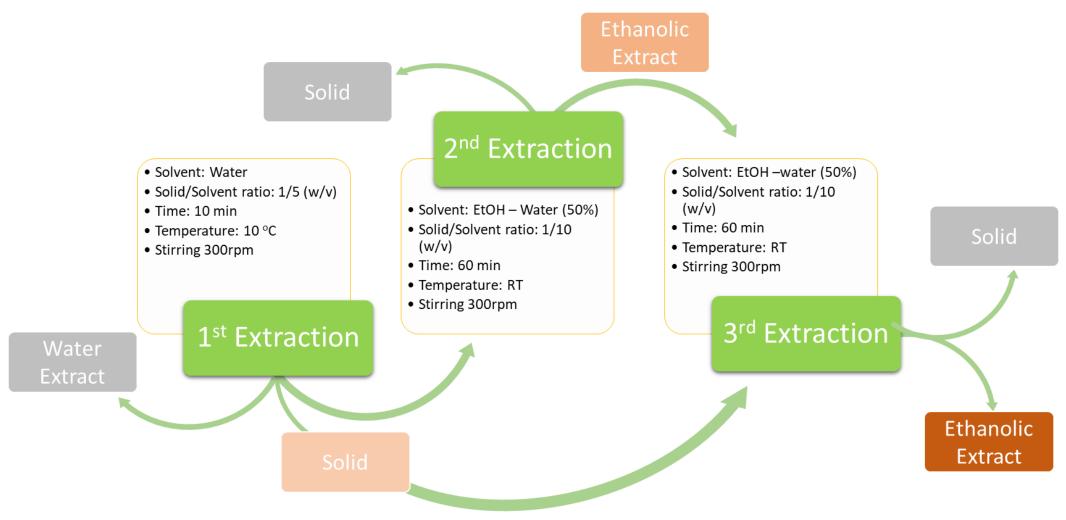
Solid/Liquid ratio 1/5 and	t=10 min
shows the lowest extractab	ility

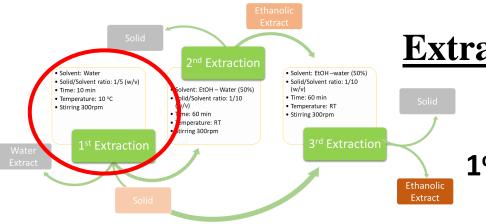
(w/v)	TPC (g GAE/kg DM)	TSC (g GLU/kg DM)	Ratio TSC/TPC	Volume loss (%)
1/5 (w/v) – 10 min	1.44 ± 0.07	10.56 ± 0.33	7.3	
1/5 (w/v) - 30 min	1.41 ± 0.13	10.49 ± 0.30	7.4	<mark>36.7</mark>
$1/5 (w/v) - 60 \min$	1.36 ± 0.11	10.14 ± 0.39	7.4	
1/10 (w/v) – 10 min	2.51 ± 0.11	12.95 ± 1.47	5.1	
1/10 (w/v) - 30 min	2.62 ± 0.18	14.61 ± 1.06	5.5	<mark>22.0</mark>
1/10 (w/v) - 60 min	2.64 ± 0.19	13.83 ± 1.22	5.2	

d) Temperature

	Extraction conditions					
SolventRatioTimeTemperatureOther						
Sorvent	(w/v)	Time	Temperature	Parameter		
Water	1/5	60 min	Variable	-		

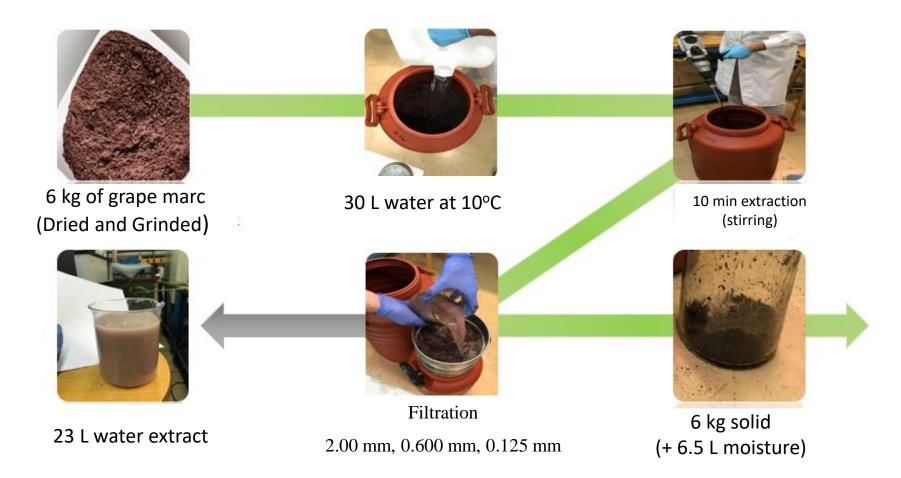
➤ The extractability of both TSC and TPC increases with increasing temperature

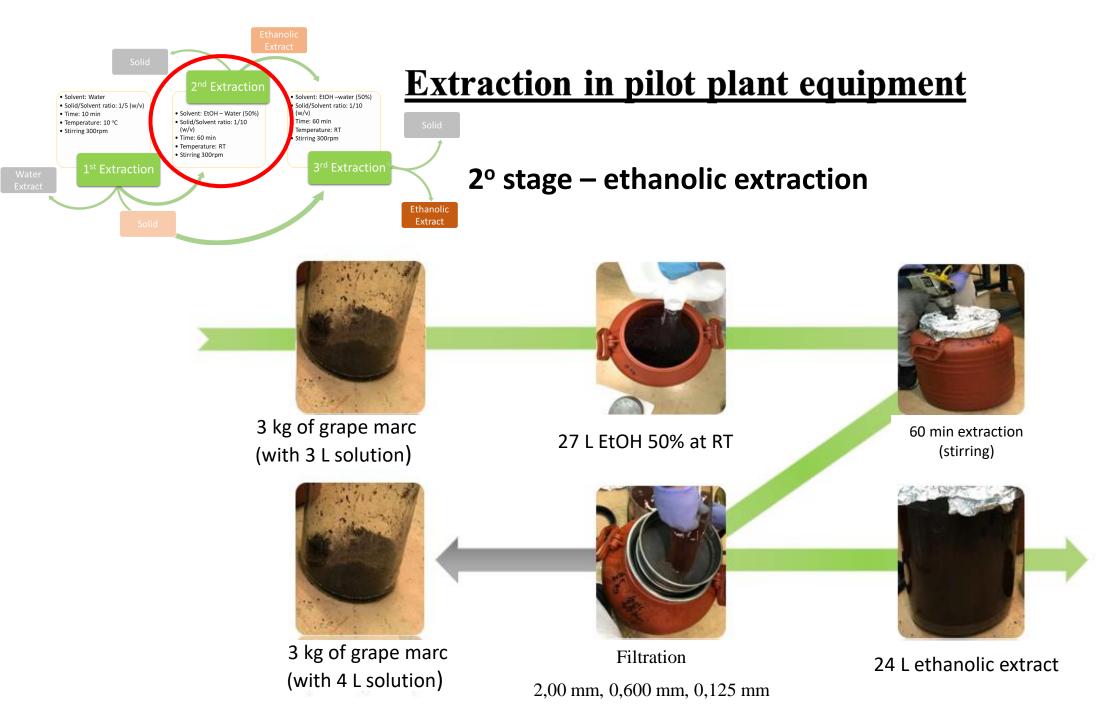

→ Increase TPC>TSC → decrease of the ratio TSC/TPC

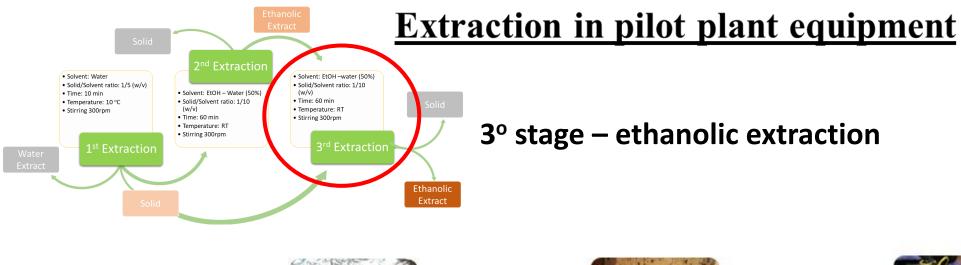

(w/v)	TPC (g GAE/kg DM)	TSC (g GLU/kg DM)	Ratio TSC/TPC
1/5 (w/v) – 10 °C	1.37 ± 0.03	13.07 ± 0.63	9.5
1/5 (w/v) – 25 °C	1.44 ± 0.07	13.30 ± 0.30	9.2
1/5 (w/v) – 40 °C	2.21 ± 0.02	13.56 ± 0.10	6.1
1/5 (w/v) – 50 °C	3.23 ± 0.35	14.80 ± 0.69	4.5
<mark>1/5 (w∕v) – 65 °C</mark>	3.80 ± 0.57	<mark>15.47 ± 0.57</mark>	<mark>4.0</mark>

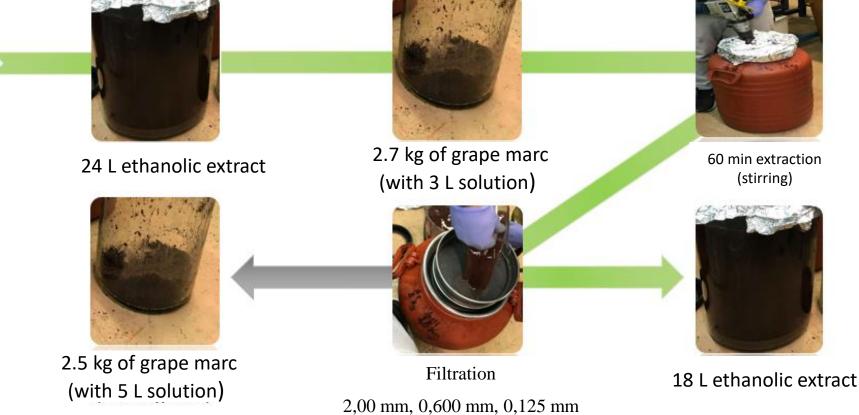
Maximum TSC/TPC ratio at 10°C
Maximum TPC/TSC ration at 65°C,

Extraction in pilot plant equipment

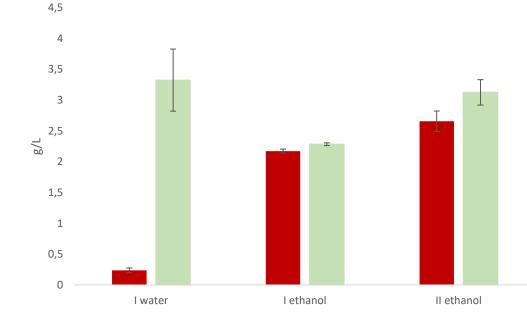

Extraction conditions






Extraction in pilot plant equipment

1° stage aqueous extractions



Extraction in pilot plant equipment

 \succ FRAP =>

	I _{water} : Significant extraction of TSC, small that of TPC
\succ	=> ratio TSC/TPC= <mark>14.0</mark>

- > $I_{ethanol}$: The TSC/TPSC ratio is 1 because a portion of the TSC
- removed during aqueous extraction
- > $II_{ethanol}$: Further extraction of TPC as well as TSC, with the values of the corresponding concentrations

=> 2.65 \pm 0.16 (g GAE/L) and 3.12 \pm 0.20 (g GLU/L) => ratio TSC/TPC =1.2

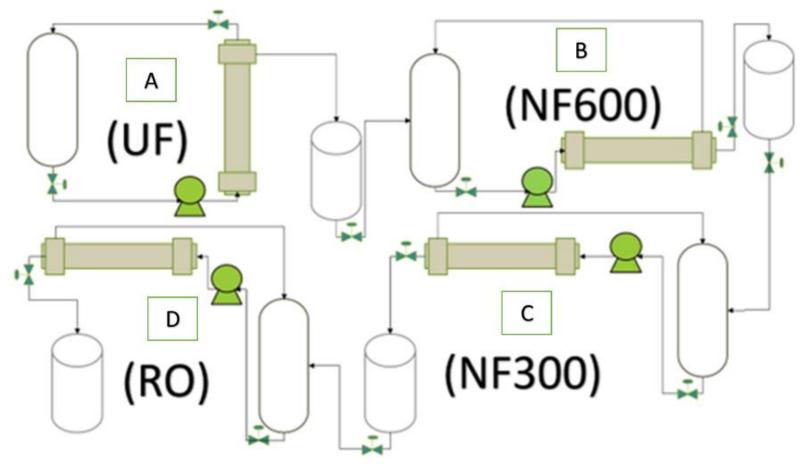
- ➤ TPC recovery from Iethanol to IIethanol extraction decreases despite increasing of phenolics concentrate (52.14 ± 0.79 → 47.81 ± 2.99 g)
 - Solvent loss is an important factor

I_{water} : Low Antioxidant Capacity (0.13 mmol Fe²⁺/L) I_{ethanol} : High Antioxidant Capacity (21.11 mmol Fe²⁺/L) II_{ethanol}: High Antioxidant Capacity (30.78 mmol Fe²⁺/L) The enrichment of the ethanolic extract is confirmed.

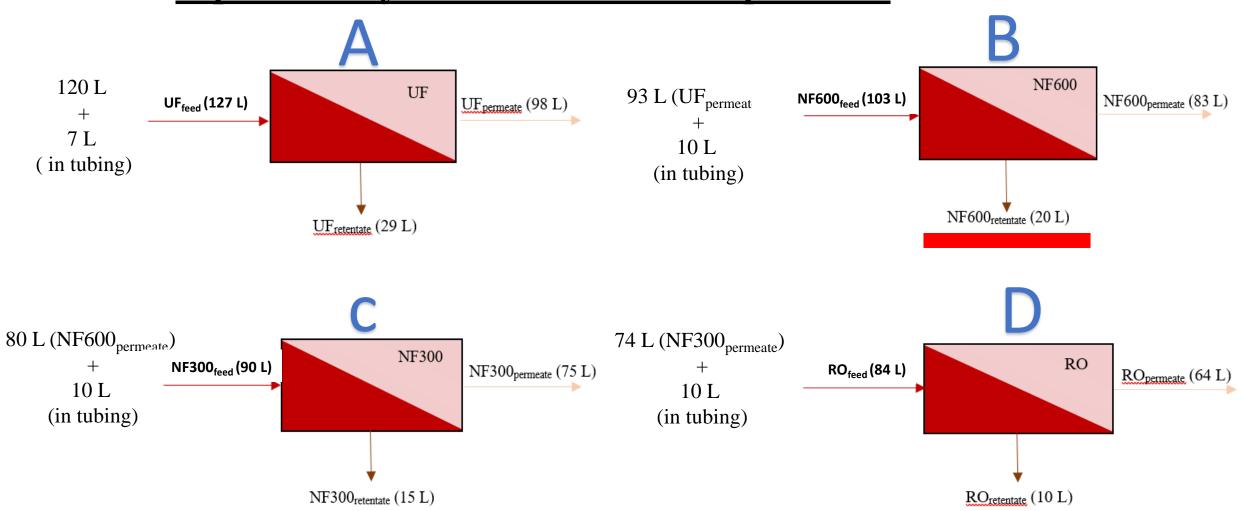
Extraction	TPC	$TDC(\alpha)$	TSC	TSC (g)	Ratio
code	(g GAE/L)	TPC (g)	(g GLU/L)	15C (g)	TSC/TPC
I _{water}	0.24 ± 0.04	5.64 ± 0.94	3.32 ± 0.50	78.02 ± 11.75	14.0
I _{ethanol}	2.17 ± 0.03	52.08 ± 0.72	2.28 ± 0.02	54.72 ± 0.48	1.0
II _{ethanol}	2.65 ± 0.16	47.70 ± 2.88	3.12 ± 0.20	56.16 ± 3.60	1.2

Antioxidant Capacity- FRAP

	I _{water}	I _{ethanol}	II _{ethanol}
mmol Fe ²⁺ /L	0.13 ± 0.04	21.11 ± 0.39	30.78 ± 0.42


4 types of membranes

- 1. UF: with MWCO 100 nm
- 2. NF600: with MWCO 600 Da
- 3. NF300: with MWCO 150-300 Da
- 4. RO: (Salt rejection)


NaCl 99%

Stream Feed

To the 18 L of ethanol extract was added another 102 L to bring the volume up to 120 L (V with which the whole process started and using a UF membrane)

Upon completion of each process, 2 fractions were produced, Concentrate (Retentate stream) and Permeate (Permeate stream). Each time the filtrate of the previous membrane was used as the feed stream for the next membrane.

From Left to the right: $II_{ethanol}$, $UF_{\alpha\rho\chi\iota\kappa\delta}$, $UF_{retentate}$, $UF_{permeate}$, $NF600_{retentate}$, $NF600_{permeate}$, $NF300_{retentate}$, $NF300_{permeate}$, $RO_{retentate}$, $RO_{permeate}$

	UF _{initial}	Uf _{retentate}	UF _{permeate}		NF600 _{initial}	NF600 _{retentate}	NF600 _{permeate}
TPC (g GAE/L)	0.34 ± 0.02	0.45 ± 0.01	0.31 ± 0.02	TPC (g GAE/L)	0.24 ± 0.05	0.82 ± 0.09	-
TPC (g)	43.52 ± 2.54	13.05 ± 0.29	30.38 ± 1.96	TPC (g)	24.72 ± 5.15	16.41 ± 1.75	-
TSC (g GLU/L)	0.37 ± 0.02	0.42 ± 0.02	$0,38 \pm 0,07$	TSC (g GLU/L)	0.33 ± 0.04	0.70 ± 0.04	-
TSC (g)	46.99 ± 2.54	12.18 ± 0.58	37.24 ± 6.86	TSC (g)	33.99 ± 4.12	14.09 ± 0.88	-
Ratio TSC/TPC	1.1	1.07	1.2	Ratio TSC/TPC	1.4	0.85	-

	NF300 _{retentate}	RO _{retentate}	۶
TPC (g GAE/L)	0.09 ± 0.03	0.02 ± 0.01	
TPC (g)	1.35 ± 0.45	0.20 ± 0.10	
TSC (g GLU/L)	0.27 ± 0.04	0.08 ± 0.01	
TSC (g)	4.05 ± 0.60	0.80 ± 0.10	
Ratio TSC/TPC	3.1	4.0	

UF: Little change in concentration of TPC and TSC, both concentrate and filtrate

24

> NF600:

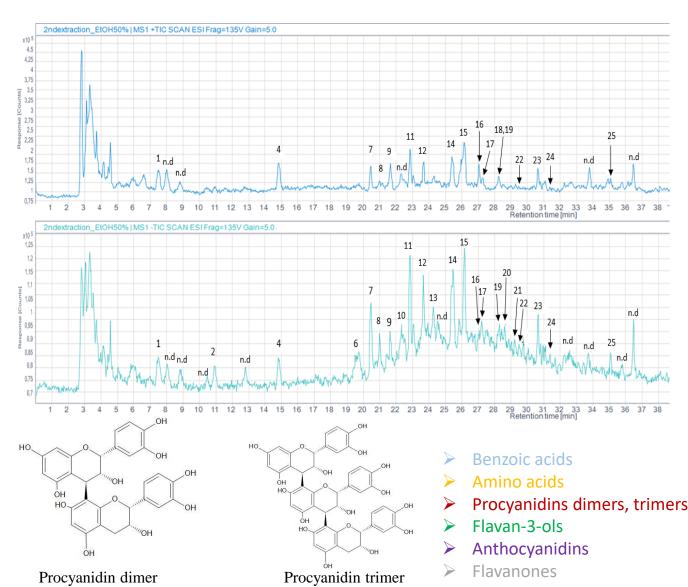
- Significant increase in [TPC] in concentrate.
- Much of the phenols were retained at this stage, reasonable proanthocyanidins with a MW of about 600 g/mol
- > Due to high [TPC] and reduced solubility results in particles precipitation

					In the antiox other
	II _{ethanol}	UF _{initial}	NF600 _{retentate}	NF300 _{retentate}	RO _{retentate}
TPC	2.65 ± 0.16	0.34 ± 0.02	0.82 ± 0.09	0.09 ± 0.03	0.02 ± 0.01
(g GAE/L)	2.03 ± 0.10	0.34 ± 0.02	0.82 ± 0.09	0.09 ± 0.03	0.02 ± 0.01
mmol Fe ²⁺ /L	30.78 ± 0.42	2.09 ± 0.04	4.36 ± 0.32	0.47 ± 0.03	0.18 ± 0.03

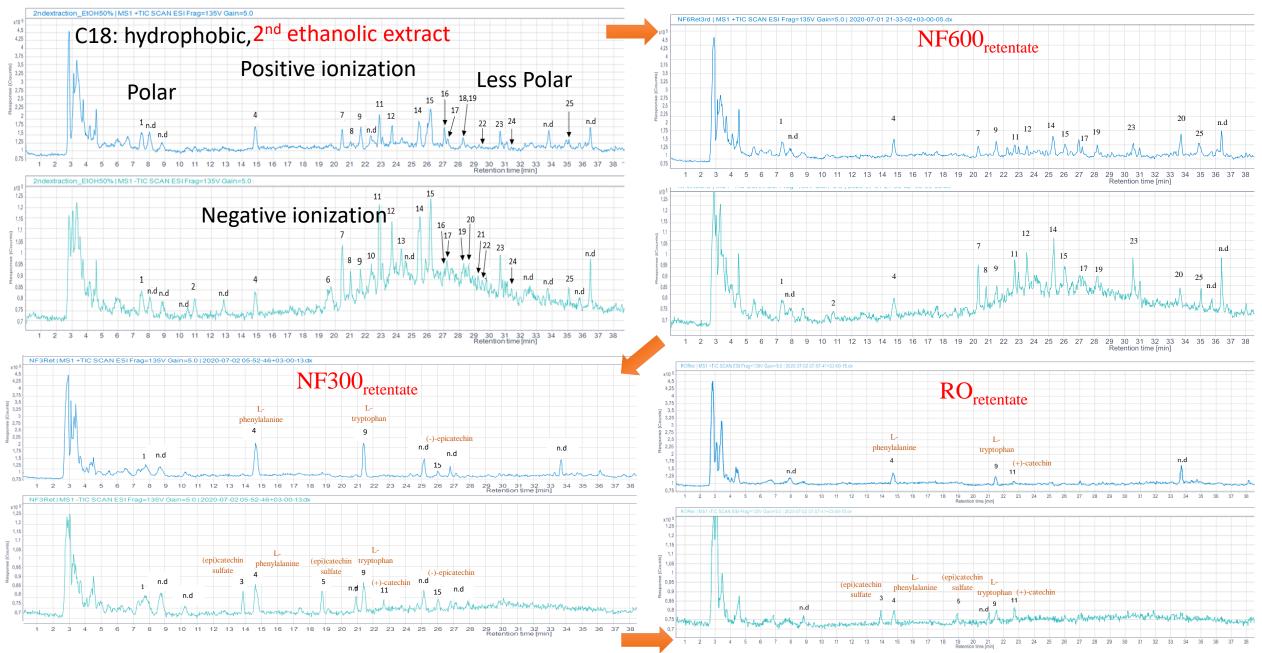
In the concentrate NF600 the max. antioxidant capacity compared to the other fractions

TOTAL ORGANIC LOAD IN TERMS OF COD

	g O ₂ /L	g O ₂
I _{water}	12.93 ± 7.44	303.9 ± 174.84
UF _{feed}	29.33 ± 0.41	3725.33 ± 52.42
UF _{retentate}	32.36 ± 1.55	938.62 ± 44.93
UF _{permeate}	28.88 ± 3.02	2830.71 ± 295.88
NF600 _{retentate}	47.51 ± 3.05	950.29 ± 61.08
NF600 _{permeate}	27.34 ± 3.13	2269.83 ± 259.98
NF300 _{retentate}	16.45 ± 3.36	246.72 ± 50.42
NF300 _{permeate}	29.72 ± 1.16	222.15 ± 87,46
RO _{retentate}	25.76 ± 2.95	257.65 ± 29.46
RO _{permeate}	17.22 ± 4.81	1102.27 ± 307.89



Liquid chromatography system coupled with a single quadrupole spectrometer and an ESI ionization source of the type LC/MSD1260 Infinity II (Agilent Technologies, Inc.)


	Retention time (Rt) (min)	0,1% Formic acid (%A)	Methanol (%B)	ACN (%C)
	0	95	5	0
	3	95	5	0
	10	85	15	0
	12	85	15	0
:)_	17	75	15	10
.,	19	75	15	10
	29	55	15	30
	31	55	15	30
	46	0	15	85
	47	0	15	85
	57	95	5	0
_	62	95	5	0

Mobile phase: A) 0,1% Formic acid, B) Methanol, C) ACN Static phase: Column C18 (Poreshell 120 EC- C18, hydrophobic) Flow rate 0.3 ml/min Injection volume (10 μL) Mass range – MS: 100-1000 m/z

	No.	Rt (min)	Tentative	No.	Rt (min)	Tentative
	1	7.4	Unknown	15	26.1	(-)-epicatechin
	2	10.8	Gallic acid	16	27.0	Unknown
	4	14.8	L-phenylalanine	17	27.2	Procyanidin B2 3,3-di-O- gallate
	6	19.6	Procyanidin B3	18	28.3	Myricetin-3-O-glucoside
	7	20.4	Procyanidin B1	19	28.3	Unknown
	8	21.0	Procyanidin trimer B type isomer 2	20	28.6	Procyanidin trimer B type isomer 6
	9	21.6	L-tryptophan	21	29.2	(epi)catechin -3-O- gallate
	10	22.4	Procyanidin trimer B type isomer 3	22	29.4	Procyanidin B5
	11	22.8	(+)-catechin			Delphinidin 3-O hexuronide
	12	23.6	Procyanidin B2	23	30.6	Quercetin 3-O galactoside
5	13	24.2	Procyanidin trimer B type isomer 4	24	31.4	Procyanidin B2 3,3 -di – O-gallate
,	14	25.4	Procyanidin trimer B type isomer 5	25	35.1	Unknown

CONCLUSIONS

Separation, Isolation, and Enrichment of phenolic samples was achieved

The NF_{600retenate} fraction showed the highest phenolic content and antioxidant capacity

By using a membrane array, the organic load was reduced to 1/3 of the original which is directly related to the reduction of the phenolic load

Main compounds found: Procyanidins (dimers – trimers), flavan-3-ols, metabolites and amino acids

FUTURE WORK

> Further utilization of fractions rich in phenolic compounds

The selective isolation of phenolic compounds from condensed fractions using β-cyclodextrins

Quantification of phenolic compounds occurring in high concentration

LARGE SCALE PILOT PLANT (300 Kg of grape marc)

THANK YOU FOR YOUR ATTENTION... !!!

No.		Rt (min)	Tentative	M.W	Molecular formula	Positive ionization m/z	Negative ionization m/z	Reference	Fraction	11	22,8	(+)-catechin	290,26	C ₁₅ H ₁₄ O ₆	291 [M+H]+	289 [M-H]	[38-39],	EEX, NF6,
1		7.4	Unknown	258	-	259 [M+H] ⁺ 101 [M+H+2Na] ³⁺ 141 [M+H+Na] ²⁺	257 [M-H] 279 [M+Na-2H] 295 [M+K-2H]	-	EEX, NF6, NF3	12	23,6	Procyanidin B2	578.52	C ₃₀ H ₂₆ O ₁₂	313 [M+Na]+ 579 [M+H]+	579 [2M-H]	[42] [38-39], [42]	NF3, RO EEX, NF6
2		10.8	Gallic acid	170,12	C,H,O,		169 [M-H]- 339 [2M-H]-	[38-40]	EEX, NF6		25,0	1100yanion D2	576,52	030426012	601 [M+Na]+ 309 [M+H+K] ²⁺	599 [M+Na-2H]·	[12]	LLA, IN O
		10.0		170,12	0,11,003		125 [M-CO ₂ -H]-	[30-40]		13	24,2	Procyanidin trimer B type isomer 4	866,74	$C_{43}H_{38}O_{18}$	-	865 [M-H]- 887 [M+Na-2H]-	[38-39], [42]	EEX
3		13.9	(epi)catechin sulfate	370,3	$C_{15}H_{14}O_9S$	-	369 [M-H]- 391 [M+Na-2H] ⁻	[40]	NF3, RO								(<u>)</u>	
4		14.8	L-phenylalanine	165,19	$C_9H_{11}NO_2$	166 [M+H] ⁺ 120 [M+H-CO-H ₂ O] ⁺	164 [M-H] ⁻	[41]	EEX, NF6, NF3, RO	14	25,4	Procyanidin trimer B type isomer 5	866,74	$C_{43}H_{38}O_{18}$	867 [M+H]+	865 [M-H]- 887 [M+Na-2H]-	[38-39], [42]	EEX
5		18.9	(epi)catechin sulfate	370,3	$\mathbf{C}_{15}\mathbf{H}_{14}\mathbf{O}_{9}\mathbf{S}$	-	369 [M-H] ⁻ 391 [M+Na-2H] ⁻	[40]	NF3, RO									
6		19.6	Procyanidin B3	578,52	$C_{30}H_{26}O_{12}$	-	577 [M-H] ⁻ 599 [M+Na-2H] ⁻	[38-39], [42]	EEX	15	26,1	(-)-epicatechin	290,26	$C_{15}H_{14}O_{6}$	291[M+H]+ 313 [M+Na]+ 603 [2M+Na]+	289 [M-H]- 579 [2M-H]- 325 [M-C1]-	[38-39], [42]	EEX, NF6
7		20,4	Procyanidin B1	578,52	$C_{30}H_{26}O_{12}$	579 [M+H] ⁺ 601 [M+Na] ⁺ 309 [M+H+K] ²⁺	577 [M-H]- 599 [M+Na-2H]-	[38-39], [42]	EEX, NF6	16	27,0	Unknown Procyanidin B2 3.3-di-	358	-	359 [M+H]+	357 [M-H]- 315 [M-CHCOH-H]- 881 [M-H]-	-	EEX., NFX
	\top									17	27,2	O-gallate	882,73	$C_{44}H_{34}O_{20}$	905 [M+Na]+	903 [M+Na-2H]	[38-39]	EEX, NF6
8		21,0	Procyanidin trimer B type isomer 2	866,74	$C_{45}H_{38}O_{18}$	867 [M+H] ⁺ 889 [M+Na] ⁺ 453 [M+H+K] ²⁺	865 [M-H] ⁻ 887 [M+Na-2H] ⁻	[38-39], [42]	EEX, NF6	18	28,3	Myricetin-3-O- glucoside	480,4	$C_{21}H_{20}O_{13}$	481[M+H]+ 563 [M+2ACN+H]+	-	[38], [40]	EEX
				20122	6 H N 0	205 [M+H] ⁺	203 [M-H]-		EEX, NF6,	19	28,3	Unknown	540	-	563 [M+Na]+ 290 [M+H+K] ²⁺	539 [M-H]- 585 [M+FA-H]-	-	EEX. NF6
9		21,6	L-tryptophan	204,23	C ₁₁ H ₁₂ N ₂ O ₂	227 [M+Na] ⁺ 188 [M+H-NH ₃] ⁺	407 [2M-H]-	[41]	NF3, RO	20	28,6	Procyanidin trimer B type isomer 6	866,74	$C_{43}H_{38}O_{18}$	-	865 [M-H] [.] 887 [M+Na-2H] [.]	[39], [42]	EEX
10		22,4	Procyanidin trimer B type isomer 3	866,74	$C_{45}H_{38}O_{18}$	-	865 [M-H] 887 [M+Na-2H]	[38-39], [42]	EEX	21	29,2	(epi)catechin -3-O- gallate	442,4	$C_{22}H_{18}O_{10}$	-	441 [M-H] ⁻ 463 [M+Na-2H] ⁻	[38-39], [42]	EEX

22	29,4	Procyanidin B5	578,5	578,5 $C_{30}H_{26}O_{12}$ $579 [M+H]^+$ 309 [M+H+K]^+ 331 [M+2ACN+2H]^+ 601 [M+Na]^+		577 [M-H] ⁻ 599 [M+Na-2H] ⁻	[39]	EEX
23	30,6	Delphinidin 3-O hexuronide	479,08	479,08 C ₂₁ H ₁₉ O ₁₃ ⁺ 501 [M 303 (fr 259 [M+		477 [M-H] ⁻ 499 [M+Na-2H] ⁻ 955[2M-H] ²⁻ 523 [M+FA-H] ⁻	[42]	EEX, NF6
		Quercetin 3-0 galactoside	464,38	$C_{21}H_{20}O_{12}$	547 [M+2ACN+H]+	463 [M-H] ⁻ 301 (fragment)	[38-39], [42]	NF6
24	31,4	Procyanidin B2 3,3 -di – O-gallate	882,73	882,73 C ₄₄ H ₃₄ O ₂₀		881 [M-H] ⁻ 439 [M-2H] ⁻	[39]	EEX
25	35,1	Unknown	566	-	303 [M+H+K] ²⁺ 589 [M+Na] ⁺	565 [M-H] ⁻ 611 [M+FA-H] ⁻ 679 [M+TFA-H] ⁻	-	EEX, NF6

Colorimetric assays

Folin-Cioqualteu assay: The F–C assay is a colorimetry method based on SET reactions between the F–C reagent and phenolic compounds. Phenolic compounds are good oxygen radical scavengers, since the electron reduction potential of phenolic radical is lower than that of oxygen radicals and also, phenoxyl radicals are less reactive than oxygen radicals. Thus, scavenging reactive oxygen radicals by phenolic compounds ceased further oxidative reactions. Under this basic condition, dissociation of a phenolic proton leads to the formation of phenolate ion, which is responsible to reduce the F–C reagent. Upon reduction, the intense yellow colour of F–C reagent turns into a blue colour. The absorbance is read at 765 nm..

The single electron transfer (SET) mechanism involves a redox(reduction-oxidation) reaction with an oxidant(radical) as an indicator of reaction endpoint. SET-based assays measure the antioxidant's reducing capacity

Mo(VI) (yellow) + e (from antioxidant) -- \rightarrow Mo (V) (Blue)

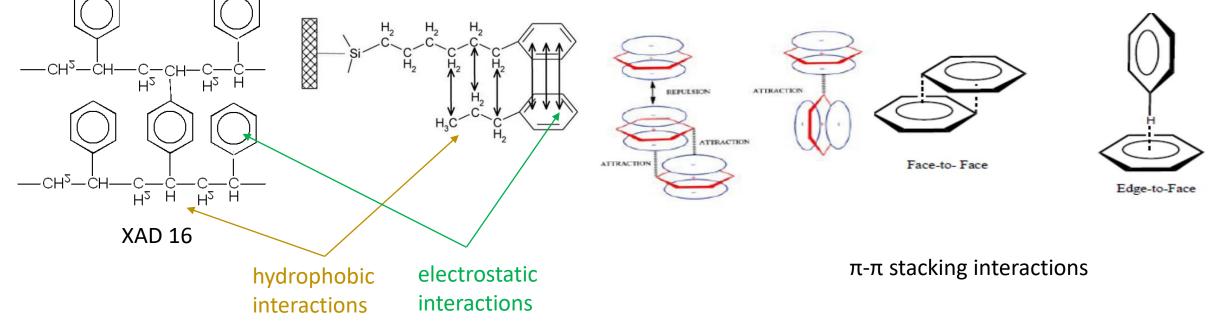
10.3390/antiox9080709

FRAP assay is a typical SET-based method, which measures the reduction of ferric ions (Fe3+)–ligand complex to the intensely blue-colored ferrous ions (Fe2+) complex by antioxidants in acidic media. In another word, this method measure is based on antioxidants to reduce the ferric 2,4,6-tripyridyl-s-triazine complex [Fe3+-(TPTZ)2]3+ to the intensely blue colored ferrous complex [Fe2+-(TPTZ)2]2+ in acidic medium. Measuring the increasing absorption at 593 nm using a spectrophotometer monitors this reduction and results are expressed as micromolar Fe2+ equivalents or relative to an antioxidant standard. However, this assay is non-specific.

FeSO₄x7H₂O is usually used as a reference standard

• SET-based methods detect the ability of an antioxidant to transfer one electron to reduce any compound, including metals, carbonyl groups and radicals. SET reactions are pH dependent. In general, ionization potential values decrease with increasing pH, reflecting increased electron donating capacity with deprotonation.

 $\mathsf{AH} + \mathsf{M3+} \rightarrow \mathsf{AH+} + \mathsf{M2+}.$


10.1007/s00204-020-02689-3

10.3390/antiox9080709

Interactions between phenolic compounds and resin

Polyphenol compounds can be adsorbed by macroporous resins via physical mechanisms, such as van der Waals forces (electrostatic interaction), hydrogen bonds (when OH- are present), and π - π stacking interactions between phenolics and the benzene rings of resins. Polyphenols contain hydrogen groups and benzene rings and, depending on their structure, exhibit different polarities. Although XAD 16 and XAD 4 have similar polarities, XAD 16 provides a higher surface area and pore volume size and absorbs more polyphenols.

Specifically, associations between compounds non-polar aromatic ring of the phenolic and hydrophobic

