CHANIA 2023

10th International Conference on Sustainable Solid Waste Management

Room 3 SESSION XV Waste Valorization II 15.30-15.45 22 Jun 2023

Lignin Valorization to Polyhydroxyalkanoates (PHA) Assisted by Adding Volatile Fatty Acids

Jiachen SUN, Kai-Chee LOH

Email: jiachen.sun@u.nus.edu Department of Chemical and Biomolecular Engineering National University of Singapore

Sources of lignin and treatment

Source 1: Biorefinery residue

Source 2: Paper industrial waste

Second abundant polymer

 Lignin valorization is ignored in biorefinery

Ragauskas, A. J. et al.. Science 344, 1246843 (2014)

- Lignin production of 70 Mt/year globally
- 2 % are sold, others burnt

- Aromatic heteropolymer
- Recalcitrant to depolymerize
- Heterogenous monomers, dimers

Catabolism of lignin/aromatics to biofuels

Tandem lignin depolymerization and bioconversion

Linger, J. G. *et al. PNAS*, 2014, *111* (33), 12013–12018. Salvachúa, D. *et al. PNAS* 2020, *117* (17), 9302–9310.

Background Results & discussion Conclusion Acknowledgement

Catabolism of lignin/aromatics to biofuels

Salvachúa, D. *et al. Green Chem.* 17, 4951–4967 (2015). Elmore, J. R. *et al. Nat Commun.* 12, 2261 (2021).

1. N-tunable lignin bioconversion

1) N-rich condition:

- initial biomass not impacted lignin degradation extent ~ 35 %
- high cell density decreased metabolic flux toward biomass growth

1. N-tunable lignin bioconversion

2) N-limited condition:

- initial biomass improved lignin degradation
- high cell density slowed bacterial growth (N consumption)
- high initial biomass & N-limited condition favored higher PHA

2. How to cultivate high initial biomass

Limitation of using lignin as sole carbon sources

Effect of lignin con. on bacterial growth at low N condition

Search for easier-utilized carbon sources!

2. How to cultivate high initial biomass

Search for easier-utilized carbon sources – cellulose/hemicellulose derived VFA

Background **Results & discussion** Conclusion Acknowledgement

3. Introduction of VFA into lignin bioconversion

Initial biomass cultivated using LB, VFA or lignin as carbon source

3. Introduction of VFA into lignin bioconversion

Lignin	VFA additive	PHA yield (g/L)	Yield synergy
1.25 g/L	-	0.042	
	+	0.20	+23%
2.5 g/L	-	0.10	
	+	0.29	+32%
5.0 g/L	-	0.24	
	+	0.43	+19%
7.5 g/L	-	0.28	
	+	0.46	+15%
Sole VFA		0.12	

- VFA improved low con. lignin degradation to 30%
- synergy with VFA additive for PHA production

3. Introduction of VFA into lignin bioconversion

- Fed-batch can avoid toxicity of acetate and cultivate high biomass with VFA
- Higher initial biomass can improve lignin degradation to 30%
- Synergy with VFA additive for PHA production

7. Conclusion and perspectives

Conclusion:

Limitation & perspectives:

- How to treat undiluted lignin stream (30-60 g/L)?
- Efficient lignin depolymerization, which is mild to subsequent bioconversion
- Recovery of HMW lignin after fermentation for other application, like materials

Acknowledgement

Thank You!

A/P Kai-Chee LOH Depart. of Chemical and Biomolecular Engineering NUS

Jiachen SUN Email: jiachen.sun@u.nus.edu NUS

CHANIA 2023

