10th International Conference on Sustainable Solid Waste Management CHANIA 2023

HYDROTHERMAL CARBONIZATION OF FOOD WASTE: INFLUENCE OF FOOD WASTE COMPOSITION AND CARBONIZATION CONDITIONS ON HYDROCHAR FOR APPLICATION IN SOILS

<u>A. Sarrion¹</u>, E. Suarez¹, J.R.V. Flora², R. Goel³, L. Liu⁴, E. Diaz¹, A.F. Mohedano¹ and N.D. Berge²

 Department of Chemical Engineering, Faculty of Sciences, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid (Spain)
Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC

3 Department of Civil and Environmental Engineering, University of Utah

4 Department of Civil and Geomatics Engineering, California State University Fresno

HYDROTHERMAL CARBONIZATION (HTC) OF BIOMASS WASTE

EVOLUTION OF PUBLICATIONS ON THE TOPIC

Project Motivation

• What feedstock properties are needed to achieve desirable products?

Carbonization product market and usability is critical for HTC commercialization and/or routine HTC use

Goals and Objectives

• <u>Overall Goal</u>

Identify the feedstock properties and carbonization conditions that are critical in determining appropriate hydrochar use

Objectives

- 1. To conduct carbonization experiments on food waste components over different carbonization conditions.
- 2. To build statistical models using laboratory data.

CHANIA 2023

3. To identify the feedstock properties and carbonization conditions that most significantly impact hydrochar use.

HTC EXPERIMENTS

Individual Components Comprising Typical Food Waste

- <u>Meat (MT)</u>

- Vegetables (VG)

- <u>Fruits (FT)</u>

- <u>Grain derived (GD)</u> <u>foods</u>
- Daily commodities (DC)

Food waste

Properties of the Individual Components Comprising Typical Food Waste

Food Waste	Moisture (%)	Component	%	Food Waste	Moisture (%)	Component	%
Meat	72.6	Poultry	50	Fruit	81.3	Banana	31
		Beef	25			Apple	20
		Pork	25			Orange	15
	90.4	Potato	19			Grape	9
Vegetables		Lettuce	17			Avocado	9
		Onion	14			Pineapple	8
		Tomato	14			Strawberry	8
		Pumpkin	12	Daily	27.7	Cheese	70
		Cole	9			Chocolate	19
		Carrot	8	commodities		Butter	11
		Pepper	7				
Grain derived	34.8	Bread/	88				
		Flour					
		Rice	9				
		Oat	3				

General Carbonization Trends

- More than 120 products obtained.
- General trends associated with products generated for each food waste component are as expected:

* Drainable process water was not always obtained with the grain derived foods and daily commodities

Hydrochar Yield

Hydrochar Yield (%, dry hydrochar/dry initial solids)

- Yields influences hydrochar use
- Interesting hydrochar characteristics:
 - Daily commodities & Meat: more of a tar

Hydrochar Energy Content

Hydrochar Nutrients

• Carbon densification increases with temperature and time:

- Carbon content is relevant for energy-related applications
- Carbon, Nitrogen, and Phosphorus are relevant when using as a fertilizer

Hydrochar Nutrients

• Nitrogen densification trends vary based on food waste component

Example at 225°C:

- Meat slightly decreases
- Daily commodities remain constant
- Vegetables, fruit, and grain derived foods slightly increase
- Trends depend on waste chemical composition

- Carbon content is relevant for energy-related applications
- Carbon, Nitrogen, and Phosphorus are relevant when using as a fertilizer

Hydrochar Nutrients

• Phosphorus densification usually increases with temperature and time

Example at 225°C:

 Meat, vegetables, fruit, and grain derived foods slightly increase

- Daily commodities slightly decrease
- Trends depend on waste chemical composition

- Carbon content is relevant for energy-related applications
- Carbon, Nitrogen, and Phosphorus are relevant when using as a fertilizer

Potential Implications of Using as a Soil Amendment

Hydrochar shows adequated characteristics to be used as a fertilizer/soil amendment

Different trends were found, with no clear understanding of what causes the differences

Sequential Water Washing of Hydrochar

Washing Process:

- 5 washing cycles
- 24 h/cycle
- Ratio water:HC = 6:1 (equivalent to a rainfall/irrigation event for soils with 1% hydrochar)

• Acute ecotoxicity to E. coli

- Trends depend on feedstock and carbonization conditions
- Overall, toxicity decreases with washing

Acute toxicity to E. coli – Day 1 washing

CHANIA 2023

**Specific trends differ for each feedstock

Acute toxicity to V. fischeri – Day 1 washing

Wash water cycle

- As EC50 increases, toxicity decreases
- Trends depend on feedstock and carbonization conditions
- Overall, toxicity decreases with washing

• Acute toxicity to V. *fischeri* – Day 1 washing

Wash Water Composition

- Measured:
 - Nutrients (N, P, K)
 - pH
 - COD
 - TOC
 - ¹H-NMR to get general composition

Wash Water Composition

CHANIA 2023

• Correlation of these data with toxicity is not clear

Factors that Influence Wash Water Toxicity: Machine Learning Model

- Model predictions: Ensemble of decision trees and gradient boosting
 - XGBRegressor from XGBoost in Python
- Trained model with 75% data

Factors that Influence Wash Water Toxicity: Machine Learning Model

- Permutation feature importance
 - Successively eliminate variables with low feature importance
 - Change in model score indicates importance

Data	Training Sets	Learners	
		*	Result (Max Votes)

Important Wash Water Properties

Can we predict aromatic content of the wash water?

Parameters of Importance:

- 1. Temperature
- 2. Feedstock H
- 3. Feedstock C
- 4. Time

CHANIA 2023

Decent prediction with parameters that make sense

Important Wash Water Properties

Parameters of Importance

- 1. Nitrogen
- 2. Molybdenum
- 3. Calcium
- 4. Cobalt
- 5. Chromium
- 6. Volatile matter
- 7. Phosphorus

Mean Square Error = 69.1

Important Wash Water Properties

Mean Square Error = 57.7

What does this mean with respect to choosing a feedstock?

- Predicted trends
 - Fixed one variable, randomized others with a uniform distribution

Conclusions

Energy value can be approximated and feedstocks chosen appropriately Possible acute toxicity in wash water from leaching of hydrochar can be predicted Link between specific waste properties and hydrochar characteristics can be identified

Future Work

INVESTIGATE DIFFERENT METHODS FOR REDUCING POTENTIALLY TOXIC SUBSTANCES ON THE **HYDROCHAR**

PERFORM AN LCA TO DETERMINE FACTORS THAT INFLUENCE THE SUSTAINABILITY OF **HYDROCHAR USE**

EVALUATE COMPONENTS OF THE LIQUID **STREAM TO INVESTIGATE ITS** TOXICITY

