

10th International Conference on Sustainable Solid Waste Management

Application of Pistachio Shell Biochar with Organic Cow Manure for Sustainable Agriculture Practice

Snigdhendubala Pradhan; Hamish R. Mackey; Tareq A. Al-Ansari; Gordon McKay

Presenting author : Snigdhendubala Pradhan

Division of Sustainable Development College of Science and Engineering

22nd June 2023

Background

of agriculture & food systems to climate changes & variability

(CSA: climate smart agriculture)

 Sustainable food security Support to rural and urban livelihoods

> Reduced GHG emissions from agricultural activities

> **Carbon sequestration on** farmland

Major issues in agriculture practice

- Increase in global atmospheric temperature
- Reduction in rainfall
- Soil infertility
- Loss of nutrients from the soil
- Excessive use of chemical fertilizers

Impact of climate change on agriculture production

Daryanto et al. (2016); Nam et al. (2001); Kamara et al. (2003); Bala et al. (2011); Lafitte et al. (2007); Li et al. (2010); Nayyar et al. (2006); Samarah et al. (2006); Mazahery-Laghab et al. (2003); Isfaq et al. (2020)

Effect of climate warming on crop yield

Food waste and major issues

Biochar a solution

Pistachio shells

- than two years to decompose.
- less or no energy for drying
- on sustainable agriculture practice.

Impact of pyrolysis temperature on biochar properties

Physicochemical properties biochar produced by three pyrolysis temperature

Impact of pyrolysis temperature on biochar nutrients

Ni, Al, Cd, As, Cr, Mo, Pb and Sr are not detected

Impact of biochar amendment to organic cow manure

Biochar produced at 450 °C amended with the manure BC: biochar

Impact of biochar on plant growth and water retention capacity

Impact of biochar on nutrient content

Conclusion

- Pistachio shell biochar produced at 450 °C is a suitable amender to improve soil quality compared to the biochar produced at higher pyrolysis temperature.
- The cow manure itself promoting better eggplant growth as it is a nutrient rich substrate but ٠ showed highest water and nutrient loss.
- Lower fraction (2%) biochar application impact more on plant growth by reducing nutrient loss by leaching and enhancing water retention.
- Application of 8% biochar showed good water retention but supress the plant growth with manure.
- Application of 2% biochar showed maximum nutrient uptake by egg plant shoot while 4% biochar showed maximum nutrient uptake by root.
- This short-term study indicates lower (2%) fraction of biochar application to the nutrient rich organic cow manure is a promising amendment to improve soil fertility and reduced nutrient loss. This study demonstrated that the valorization of pistachio shell to biochar in application to agriculture practice is a sustainable solution to reduce the fertilizer cost, water demand cost and
- boost a circular bioeconomy.
- Extended pot testing with a few more crops is the future scope of this research for long-term resilience.

The authors would like to thank Qatar National Research Fund (QNRF) for supporting this research work under the National Priorities Research Program (Grant Number: NPRP11S-0117-180328).

Member of Qatar Foundation

References

- Daryanto, S., Wang, L., and Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:e0156362. doi: 10.1371/journal.pone.0156362
- Nam, N. H., Chauhan, Y. S., and Johansen, C. (2001). Effect of timing of drought stress on growth and grain yield of extra-short-duration pigeonpea lines. J. Agric. Sci. 136, 179-189. doi: 10.1017/S0021859601008607
- Kamara, A. Y., Menkir, A., Badu-Apraku, B., and Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. J. Agric. Sci. 141, 43–50. doi: 10.1017/S0021859603003423
- Balla, K., Rakszegi, M., Li, Z., Bekes, F., Bencze, S., and Veisz, O. (2011). Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 29, 117-128.
- Lafitte, H. R., Yongsheng, G., Yan, S., and Li, Z. K. (2007). Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J. Exp. Bot. 58, 169–175. doi: 10.1093/jxb/erl101
- Li, Z., Peng, T., Xie, Q., Han, S., and Tian, J. (2010). Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J. Genet. 89, 409–415. doi: 10.1007/s12041-010-0059-1
- Nayyar, H., Kaur, S., Singh, S., and Upadhyaya, H. D. (2006). Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpeagenotypes to water stress during seed filling: effects on accumulation of seed reserves and yield. J. Sci. Food Agric. 86, 2076–2082. doi: 10.1002/jsfa.2574
- Samarah, N. H. (2005). Effects of drought stress on growth and yield of barley. Agron. Sustain. Dev. 25, 145–149. doi: 10.1051/agro:2004064
- Mazahery-Laghab, H., Nouri, F., and Abianeh, H. Z. (2003). Effects of the reduction of drought stress using supplementary irrigation for sunflower (*Helianthus annuus*) in dry farming conditions. Pajouheshva Sazandegi Agron. Hortic. 59, 81–86.
- Du, Z., Wang, Y., Huang, J., Lu, N., Liu, X., Lou, Y., and Zhang, Q. (2014). Consecutive biochar application alters soil enzyme activities in the winter wheat-growing season. Soil Science, 179, 75-83.

Thank You