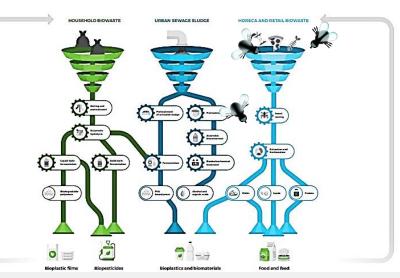


Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agroalimentari - BIOGEST-SITEIA

LEADING A REVOLUTION IN BIOWASTE RECYCLING

The black soldier fly (*Hermetia illucens* L.) strategy within "SCALIBUR – Scalable technologies for bio-urban waste recovery" H2020 project

<u>Giuseppe Montevecchi</u>, Lucian Miron, Alejandro Aragón Gutiérrez, Laura Ioana Macavei, Giacomo Benassi, Elena Zanelli, Luke Mizzi, Sara D'Arco, Pilar Albaladejo Sánchez, Geert Bruggeman, Menno Thomas, Lara Maistrello, Andrea Antonelli - UNIMORE, KOUR ENERGY, ZETADEC, NS, ITENE


entro per il Miglioramento la Valorizzazione delle Risorse Biologich groalimentari - BIOGEST-SITEIA

SCAL BUR WWW.SCALIBUR BUR @SCALIBUR_H2020 m SCAL

SCALABLE TECHNOLOGIES FOR BIO-URBAN WASTE RECOVERY Leading a revolution in biowaste recycling

Grant agreement ID: 817788 Overall budget € 11,728,483,61 **EU contribution € 9,999,391,39** Kickoff – Nov 1st, 2018 End – Oct 31st, 2022

SCALTBUR

Black soldier fly

SCAL

Hermetia illucens Mosca soldato Black soldier fly Centro per El Migliorameno e la Valorazza Deserteraziones e la Valorazza Deserteraziones

جندي أسود يطير

Mouche soldat noir

Food waste management

Flexible technology

Water removal/mass reduction

Food waste bioconversion steady composition of **protein** modulable composition of **fat** and **chitin** frass accumulation → fertilizer

> *Hermetia illucens* Black soldier fly

entro per il Miglioramento la Valorizzazione delle Risorse Biologiche groalimentari - BIOGEST-SITEIA

Using black soldier fly larvae to bio-convert food waste into high quality feed ingredients can be classified as "**PREVENTION**" therefore, it is preferred to anaerobic digestion (AD) as a method for organic food waste management in the waste hierarchy [1,2]

[1] European Commission. Directive 2008/98/EC of The European Parliament and of The Council of 19 November 2008 on Waste and Repealing Certain Directives; Official Journal of the European Union: Aberdeen, UK, 2008

[2] WRAP. Why Take Action: Legal/Policy Case. Available online: http://www.wrap.org.uk/content/why-take-action-legalpolicy-case

The substrate

> The pilot plant

Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agroalimentari - BIOGEST-SITEIA

SCAL

7

Sustainable Chemistry and Pharmacy 33 (2023) 101061

Contents lists available at ScienceDirect

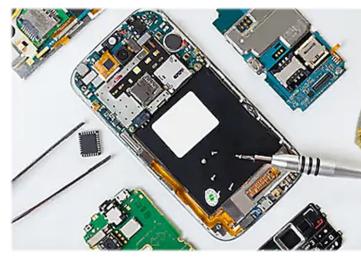
Sustainable Chemistry and Pharmacy

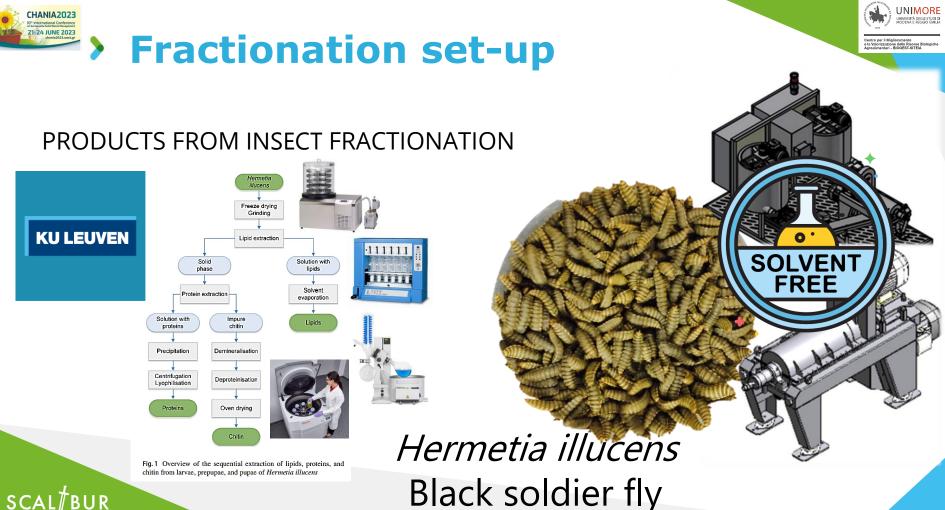
journal homepage: www.elsevier.com/locate/scp

Seasonal variability of the HO.RE.CA. food leftovers employed as a feeding substrate for black soldier fly (*Hermetia illucens* L.) larvae and effects on the rearing performance

Giuseppe Montevecchi ^{a, b, *}, Laura Ioana Macavei ^{a, 1}, Elena Zanelli ^a, Giacomo Benassi ^c, Giulia Pinotti ^a, Sara D'Arco ^a, Silvia Buffagni ^a, Francesca Masino ^{a, b}, Lara Maistrello ^{a, b}, Andrea Antonelli ^{a, b}

SCAL BUR


entro per il Miglioramento la Valorizzazione delle Risorse Bio orgalimentari - BIOGEST-SITEIA


Centro per il Miglioramento e la Valorizzazione delle Risorse Biologich Agroalimentari - BIOGEST-SITEIA

PRODUCTS FROM INSECT FRACTIONATION

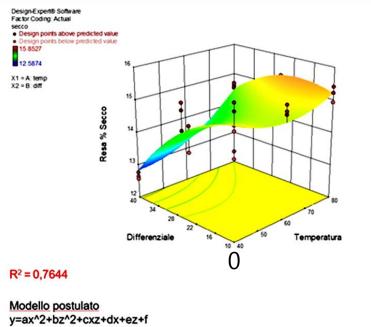
Hermetia illucens Black soldier fly

SCAL BUR

> The optimization of the fractionation pilot plant

- Flow rate of the progressing screw pump 10 L/h
- Drum speed 8500 rpm (max)
- The critical parameters selected and evaluated were:
 - 1) temperature of the aqueous suspension of ground larvae
 - 2) differential speed, i.e. the difference in rotation speed between the drum and the cochlea (Archimedes screw)

• FDOE 3ⁿ (n = 2) + 1 replication using average conditions


Sample T (°C) Δn

The optimization of the fractionation pilot plant

Solid raw material

Design-Expert® Software Factor Coding Actual proteine e chitina Design points above predicted value Design points below predicted value 14.425 9 66027 X1 = A: temp X2 = B: diff Chitina 13 • % Proteine 12 Resa Differenziale Temperatura

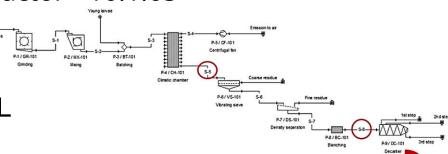
R² = 0,7530

Modello postulato: y=ax+bz+c

SCAL

Response surface methodology

Protein + chitin



LCA – Input and Output

HO.RE.CA. substrate - 121.2 kg 5-days old BSF larvae - 55 g

Mature BSF larvae - 20 kg

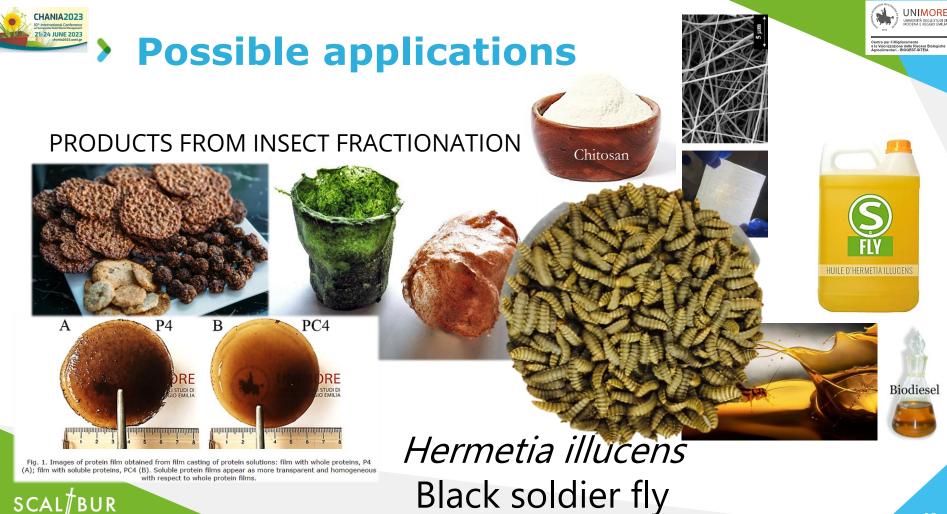
Substrate/larval biomass conversion factor - 10:1.65 Solid residue - 1/3 Moisture - 2/3 Hot tap water (boiler) - 22.55 L Tap water at room temperature - 22.29 L NaOH pellet - 178.32 g Hydrochloric acid (30-33%) - 2.23 kg



SCAL

-24 JUNE 2023

Process	Equipment	Time (min)	Power (kWh)	kWh cost (€)	
Larval killing and blanching	Larval blanching system	35	1.149	0.29	
Larval mincing	Mincer	10	0.073	0.02	
Homogenization and fat melting	D - Stirring system + heating	30	1.888	0.47	
1 st decanter separation	D - Decanter + stirring system + heating	15	1.018	0.25	
pH change (12.5) and protein solubilization	D - Decanter + stirring system + heating	120	7.550	1.89	
2 nd decanter separation	D - Decanter + stirring system + heating	15	1.018	0.25	
Protein precipitation	Fridge +4 °C	720	3.000	0.75	
3 rd decanter separation	D - Decanter + stirring system	15	0.341	0.09	
Entire process		960 (16 h)	16.036	4.01	


Centro per il Miglioramento I la Valorizzazione delle Risorse Biologich Igroalimentari - BIOGEST-SITEIA

PRODUCTS FROM INSECT FRACTIONATION

Hermetia illucens Black soldier fly

SCAL^TBUR

The applications of isolated proteins for the preparation of food and feed

All **essential amino acids** were present in high enough quantities for human requirements (EAAI = 1.94).

Other proteins:

- Tenebrio molitor, EAAI = 1.60
- Zophobas morio, EAAI = 1.66
- Pea, EAAI = 1.37
- Bean, EAAI = 1.34
- Soybean, EAAI = 1.56-1.85
- Casein, EAAI = 1.93

> Dog food kibbles

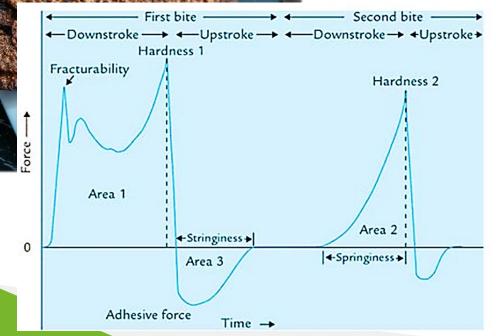
ZETADEC

Conventional (130 °C)

With insects (130 °C)

Conventional (150 °C)

With insects (150 °C)



SCAL

Hardness - Force to attain a given deformation

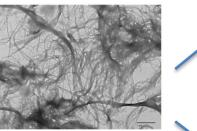
Popular terms: Soft - Firm - Hard

Cohesiveness – Extent to which a material can be deformed before its ruptures

Popular terms: Crumbly – Crunchy - Brittle

Springiness – Rate at which a deformed material goes to its undeformed condition after deforming force is removed


<u> Popular terms: Plastic - Elastic</u>


Chewiness - Energy required to masticate a solid food to a state ready for swallowing

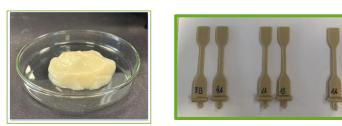
<u> Popular terms: Tender – Chewy - Tough</u>

Validation and characterization of the chitin fraction

Chitin nanofibers

Additive in food packaging materials

Formulation of high-barrier coatings


Centro per il Miglioramento e la Valorizzazione delle Risorse

> CENTRO TECNOLÓGICO

ITENE

Production and validation of chitin nanofibers

Main results of the influence of chitin nanofibers on the properties of PBSA-TPS and PBAT-TPS composites:

• The addition of chitin fibers improved the thermal stability of the biodegradable formulations.

Additive in food packaging materials

- The Young Modulus of the composites increased as the content of nanofibers increased in the sample, as a consequence of a reinforcing effect of the additive
- A remarkable decrease in both the oxygen and water vapor transmission rate was observed, indicating the positive effect of the incorporation of nanofibers

CENTRO TECNOLÓGICO

ITENE

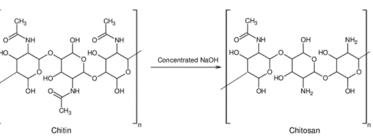
Production and validation of chitin nanofibers

Formulation of highbarrier coatings The application of a coating based on chitin nanofibers resulted in a considerable decrease of the oxygen transmission rate.

Considering the thickness of the sample, the oxygen permeability coefficient was calculated, and a **reduction of 8.5** in the oxygen permeability was observed for the coated with the **ChNF1-Sorb10** coating formulation.

SCAL

CENTRO TECNOLÓGICO


ITENE

CENTRO TECNOLÓGICO

Production, characterization, and validation of chitosan as raw material for plastic packaging

Chitosan obtained from chitin extracted from BSF

Reference	Tensile modulus	Tensile strength	Strain at break	
	(GPa)	(MPa)	(%)	
PLA	3.5	45	<3	_
PLA-CS5	3.7	47	6.8	
PLA-CS10	4.1	48	5.2	_

- Chitosan was **compounded** with poly lactic acid by **melt** extrusion.
- The addition of 5 and 10 w/w of plasticized chitosan resulted in an increase in the Young Modulus, indicating a more rigid behavior of the blend formulations.
- Tensile strength did not significantly change by the presence of chitosan
- The strain at break slightly increased, probably due to the presence of glycerol in the blend formulation.

The **critical parameters** of the decanter system have a significant effect on the separation yield:

- the **temperature** maintained at the upper level (80 °C) decreases the viscosity of the larval fat allowing a **better separation** from the solid phase
- the differential speed set to the minimum level (10) increases the residence time inside the drum-cochlea system, thus facilitating the separation and dehydration of the protein-chitin material

Although still underway, the LCA shows that the cost to stabilize and fractionate a 20-kg pilot lot of BSF larvae is around 4 €

The scenarios published by authoritative organizations (WWF and Tesco) estimate that within a few years the **price of BSF larvae and their factions will become competitive compared with other protein sources currently used in animal feed**. Therefore, the completion of the LCA results will provide further elements to achieve an overall assessment

The decanter system is an effective equipment to fractionate BSF larvae in a **continuous way**

With a **single device** it is possible to carry out the separation of the solid phase (chitin and proteins) from the liquid phase (fats and water) **without using solvents** and numerous lab equipments

It is suitable not only on a lab scale but is potentially **up-scalable** to be included in a wider local dimension with a a look at an **economy of scale**, which is reflected in the **reduction of costs**

https://scalibur.eu/

LEADING A REVOLUTION IN BIOWASTE RECYCLING

27

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agroalimentari - BIOGEST-SITEIA

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 817788