

Biorefinery of grape stem to obtain a sugar-rich liquor for food applications and an ingredient for animal feed

NEWFEED: Turn food industry by-products into secondary feedstuffs via circulareconomy schemes

Jone Ibarruri – AZTI - jibarruri@azti.es -

AZIII MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Project Case Studies

Three value chains at the Mediterranean area will be validated to create new business opportunities based on a multi-actor approach in their conception, configuration and its sustainability assessment:

produce a new feed ingredient

for ruminants (dairy sheep and

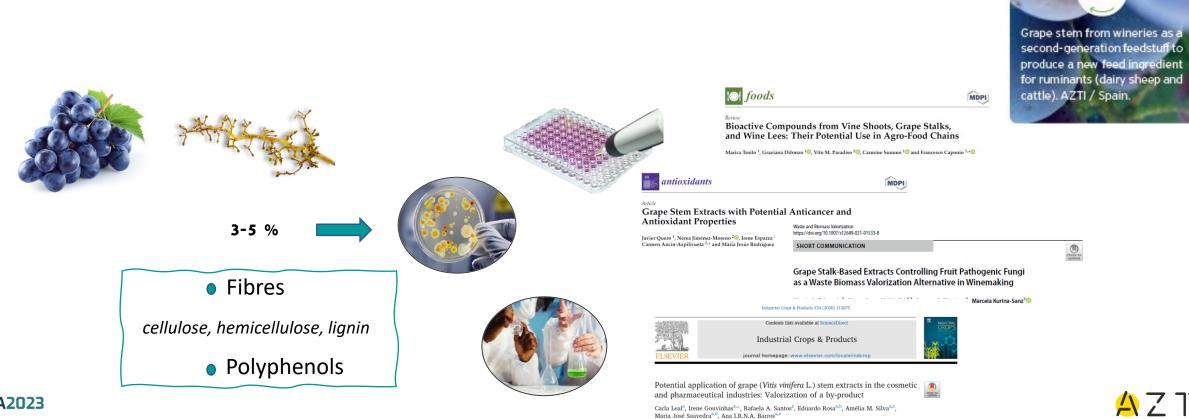
cattle). AZTI / Spain.

Orange peel from orange juice industry to produce an improved feed ingredient for ruminants (dairy sheep). NTUA / Greece.

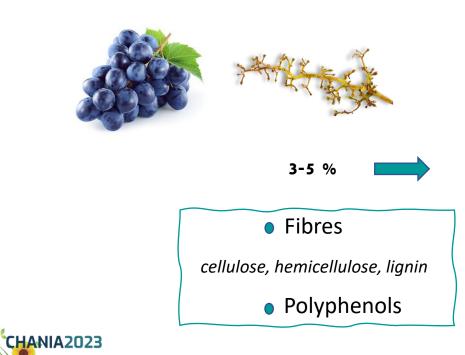
Olive cake from olive oil industry to produce an improved feed ingredient for poultry (broiler chicken). HUSD / Egypt.

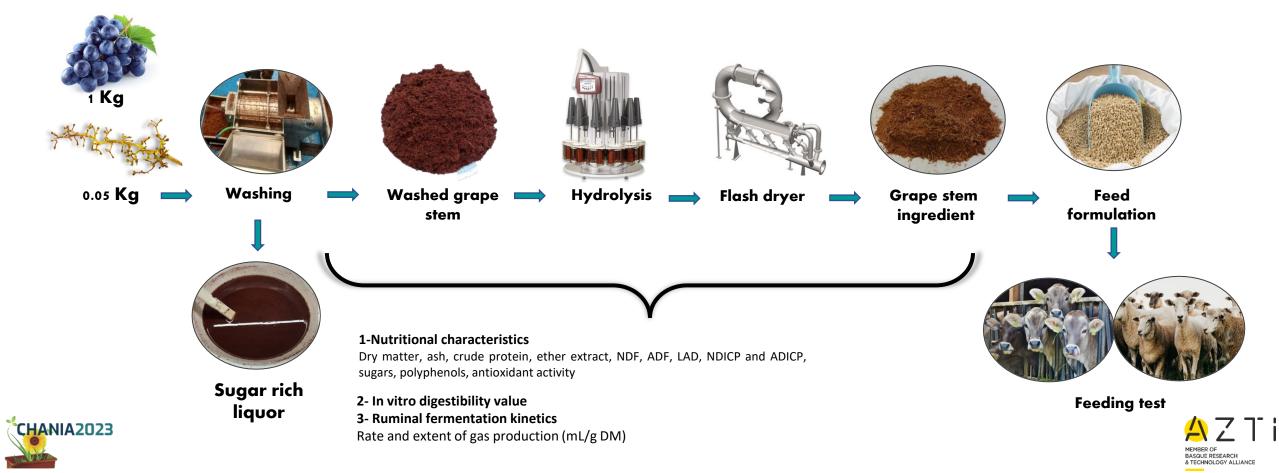
CASE STUDY 1 Grape stem-based ingredients for dairy sheep and cattle

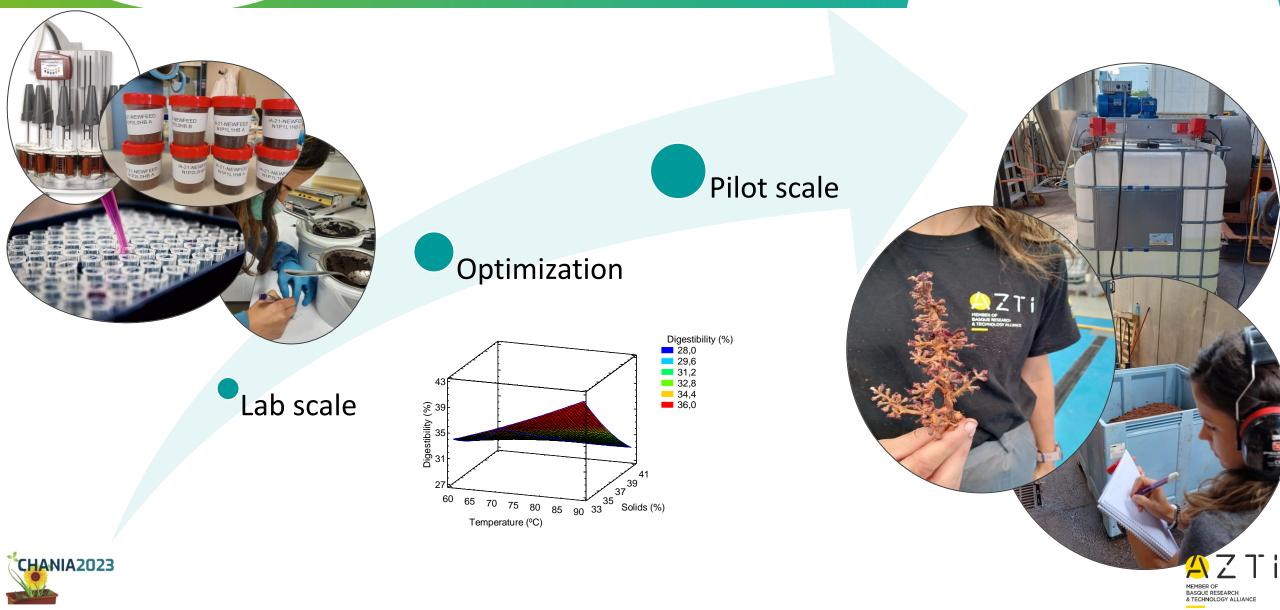
- EU is the world-leading producer of wine.
- Average annual production 167 million hectoliters that suppose the 65 % of production.
- 75 % of EU production is produced in Italy, Spain and France.



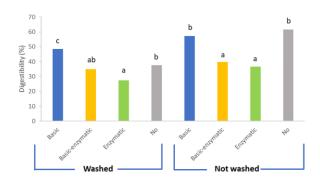
MEMBER OF BASQUE RESEARCH


Objective





Explicit at ize hydrolygip pocess be considered filling in group and a considered a considered a considered at the static at the second decision of the static at the second decision of the second decision o

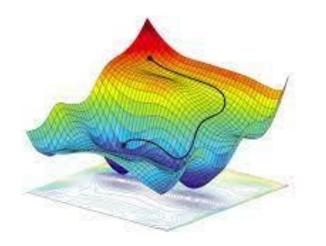

Lab scale

Optimization of the hydrolysis process

Fibre fraction	Wash	Hydrolysis	Conditions
FIDIE ITACLION	Yes	1. NaOH	1% NaOH, ratio 1:1.25 w/w 90 ºC 3 h 250 rpm
% of inclusion	No	2. Cellulolytic Enzymes	Enzymes 2 % 55 °C 20h
		3. NaOH + Cellulolytic enzymes	Consecutive processes

✓ EH + centrifugation

- Loss of nutrients
- Decrease in polyphenols and sugars
- Decrease digestibility
- \checkmark AH although involving a centrifugation
 - Fibre degradation increases polyphenols and sugar availability when samples are washed
- ✓ Digestibility
 - AH improves digestibility when samples are washed



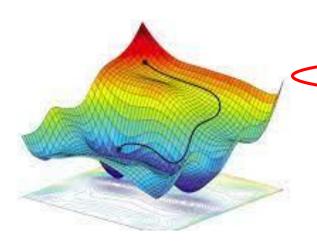
Optimization

newfeed FEED FROM FOOD INDUSTRY BY-PRODUCTS

Optimization of the hydrolysis process

Wash		Hydrolysis			Conditions		
Yes	<	1. NaOH		1% NaC	1% NaOH, ratio 1:1.25 w/w 90 ºC 3 h 250 rpm		
No	2. (Celluloly <mark>tic</mark> Ei	nzymes		Enzymes 2 %	55 °C 20h	
	3. NaO	H + Celluloly	tic enzyme	S	Consecutive	processes	
Factors		Units	Low	Centre	High		
A:Temperature	2	°C	60	75	90		
B:Time		h	1	2	3		
C:Solids		%	33	36.5	40		

Factor		Selected conditions
	Temperature (°C)	90
	Time (h)	2.3
	Solids (%)	33.0

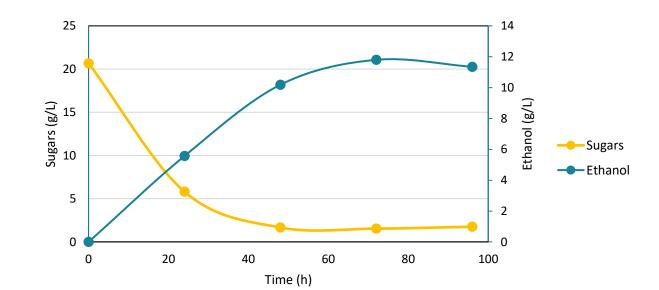


Optimization

newfeed FEED FROM FOOD INDUSTRY BY-PRODUCTS

Optimization of the hydrolysis process

	Non-Hydrolysed sample	Hydrolysed sample	
Sugars (mg/g)	199	204	
Polyphenols (mg GAE/mg)	27.8	31.7	
Antioxidant activity (mg TEAC/g)	35.0	37.4	
Digestibility (%)	28.2	43	
Ash (%)	10.2	13.7	
Protein (%)	5.7	6.5	
ADF (%)	36.0	47.6	
Lignin (%)	21.3	34.8	
NDF (%)	46.0	47.9	
Total VFA (mmol/100mL)	4.9	5.4	


Optimization

newfeed

Bioethanol production

	Fructose (g/L)	Glucose (g/L)	Total sugars (g/L)
Liquor	10.2	13.2	23.5

✓ Almost all sugar are consumed (> 90 %)

Pilot scale

newfeec

Test and validate the proposed value chain of grape stem (TRL 6-7)

New ingredient production

Feed efficiency trials

- 1. Milk yields
- 2. Milk quality
- 3. Curds sensory properties
- 4. Enteric methane emissions

<u>Pilot scale</u> *New ingredient production*

newfeec

Collecting and Crushing \rightarrow grape stems (69 % of moisture)

<u>Pilot scale</u> *New ingredient production*

Washing \rightarrow Grape stems + Water (ratio 1:1)

newfeec

Washed grape stem \rightarrow 0.65 grape stems (79-80 % of moisture)

Liquor \rightarrow 0.35 (bioethanol production)

<u>Pilot scale</u> *New ingredient production*

newteec

Hydrolysis \rightarrow grape stems : water (0.6 % NaOH)

Hydrolysed grape stem after mechanical dewatering (72.8 % moisture)

New ingredient production

Washed grape stem (79-80 % of moisture)

Washed and hydrolysed grape stem (72.8 % moisture)

Dried grape stems (10 % of moisture) : 2 prototypes for animal feeding trials

Grape stem-based ingredients validated in two ruminant production systems: dairy cattle and sheep.

	CTR	GS (hydrolysed and non-hydrolysed
Ingredients (%)		
Barley	5	19
Oats	53	24
Maize	10	15
ddgs	0	5
Rapeseed meal	21	16
Rapeseed oil	5	5
Molasses	3	3
Grape stems		10
VIT-MIN	3	3
Nutritive value		
UFL	1,01	0,99
CP (%)	15,8	16,1
Fat (%)	8,9	9,3
Starch (%)	32,2	32,6

IN THE MEDITERRANEAN AREA

CONCLUSIONS

- The washing process reduces the sugar content in order to improve the drying efficiency and solve the fermentation processes associated with the high sugar content in the raw material.
- The washing process reduces sugars in grape stems and, therefore, their nutritive value.
- AH improves in vitro digestibility of grape stems when samples are washed.
- The liquor obtained can be used as a source of sugars for bioethanol production.
- Grape stems can be formulated up to 10 % in dairy sheep's diets without impairing its nutritional value.

NEXT STEPS

- Animal feeding trials to validate prototypes
- Bioethanol production optimization
- Techno-economic feasibility study
- Life Cycle Assesment

CHANIA2023

- Legal and regulatory issues
- Dissemination and Exploitation plan

Thank you for your attention!

info@newfeed-prima.eu

David San Martin / AZTI: dsanmartin@azti.es

https://newfeed-prima.eu/

