

Novel bioaugmentation strategy with a syntrophic enrichment for enhanced digestion (SEED) system for maximizing methane yield from municipal sludge

Vikas Kumar¹ and Cigdem Eskicioglu²

¹Ph.D., The University of British Columbia (UBC), Okanagan Campus, Kelowna, British Columbia, Canada ²Professor, Leader of UBC Bioreactor Technology Group, UBC, Okanagan Campus, Kelowna, British Columbia, Canada

Background

Municipal sludge management: Major challenge in wastewater treatment

Higher sludge production

Canadian wastewater treatment facilities produce more than 660,000 dry tons (2.5 million wet tons).*

*CCME (Canadian Council of Ministers of the Environment), 2012. Canada-wide approach for the management of wastewater biosolids.

High sludge disposal costs

~40% capital cost and ~50% of operating cost

Social and environmental concerns

Higher organic matter

Odor

Pathogens Micropollutant

Anaerobic digestion as a sustainable solution

Long retention time (**20-30 days**)

Sensitive to physicochemical stress (such as pH, temperature, toxins etc.)

http://www.metrovancouver.org/services/liquid-waste/consultations/annacis-island-wwtp/aboutproject/Pages/default.aspx

Background

Anaerobic digestion: Challenges and approach

Doubling time (~1-30 days)

Extremely sensitive to environmental stress, O_2 , pH, temperature, shear, toxins etc.

All stages of engineered AD system ranging from **1 to 8%** only*

*Płaza G, Jałowiecki Ł, Głowacka D, Hubeny J, Harnisz M, Korzeniewska E. Insights into the microbial diversity and structure in a full-scale municipal wastewater treatment plant with particular regard to Archaea. Plos one. 2021 Apr 26;16(4):e0250514.

Microbial syntrophy: co-existing together

Methanogenic archaea

Better communication brings better microbial syntrophy

https://www.pinclipart.com

Motivation for Research

Microbial Syntrophy: Concept of DIET (Direct interspecies electron transfer)

Kumar, V., Nabaterega, R., Khoei, S. and Eskicioglu, C., 2021. Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials. *Renewable and Sustainable Energy Reviews*, 144, p.110965.

Motivation for Research

Suitability of carbon cloth for enhanced anaerobic digestion performance

Non toxic Biocompatible

Inexpensive Condu

Conductive

Retained in the reactor without loss due to washout

Shows better performance in terms of organic removal compared to graphite rod and biochar*

Commercial carbon cloth represented as untreated carbon cloth (U-CC)

^{*}Zhao Z, Zhang Y, Woodard TL, Nevin KP, Lovley DR. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol 2015;191:140–5. Is it possible to <u>develop a more biocompatible surface using carbon cloth</u> for the attachment of methanogens that promotes microbial growth leading to higher methane yield utilizing municipal sludge?

Is it possible to **build a side-stream reservoir of an active microbial culture** rich in methanogenic archaea grown on **carbon cloth** for bioaugmentation of conventional anaerobic digesters?

Activation of carbon cloth

Biochemical methane potential assays with/without carbon cloth

Conditions:

Food to microorganism ration (F/M ratio) 1.0 (g VS_{feed}/g VS_{inoculum}); Temperature: 55°C; Substrate: Thickened screened primary sludge (TSPS); Inoculum: Thermophilic anaerobic reactor (55°C, 20 days SRT)

- ✓ Control [no CC]
- ✓ Blank-1 [with inoculum only]
- ✓ Blank-2 [inoculum with U-CC (1 g)]
- ✓ Blank-3 [inoculum with A-CC (1 g)]

Batch-1

Contribution of each CC pretreatment step on methane improvement

Batch-2/Batch-3

Optimization of CC dose on rate/extent of methane improvement

Effect of CC on microbial shift (included to journal articles only)

✓ Blank-3 [inoculum with A-CC (1 g)]

- (0.20, 0.40, 0.80, 1.00 and 1.20 g) U-CC
- ✓ (0.20, 0.40. 0.80, 1.00 and 1.20 g) A-CC

Total BMP = 152 bottles

List of **BTG** equipment used for the experimental studies

Agilent 7820A gas chromatography with thermal conductivity detector

Agilent 7890A gas chromatography with flame ionization detector

Incubator shaker

Spectrophotometer

Thermotron (Temperature controlled chamber)

Hydrothermal reactor

Facilities utilized outside BTG for the experimental studies

(for carbon cloth characterization)

BET analysis: Micromeritics ASAP 2000 equipment at the Catalysis and Chemical Reaction

Engineering Laboratories at the University of Saskatchewan, Canada

- **Raman spectroscopy**: LabRam spectrometer for Raman spectroscopy at UBC Okanagan
- o **FTIR spectroscopy**: Nicolet Magna 850 Fourier transform spectrometer
- o **XRD analysis:** Bruker D8-Advance X-ray diffractometer at UBC Vancouver
- **FTIR analysis**: Nicolet iS20 instrument at NPNL UBC Okanagan
- o **<u>SEM analysis</u>**: Tescan Mira 3 XMU Scanning Electron Microscope at FiLTER (Fipke Laboratory for

Trace Element Research) Laboratory at UBC Okanagan

- **Edx analysis**: Oxford Instruments X-126 at FiLTER Laboratory at UBC Okanagan.
- o **Carbon cloth electrical conductivity:** UBC Okanagan, Physics laboratory

Results and discussion

Fig. XRD (X ray diffraction) analysis of CC

Fig. FTIR (Fourier transform Infrared spectroscopy) analysis of CC

Table BET and BJH analysis for U-CC and A-CC

		Surface area (m²/g)	Pore volume (BJH) (cm³/g)	Pore size (nm)
BJH: Pore size determination BET: Surface area analysis	U-CC	0.45 (BJH)	0.001	16.13 (BJH)
	A-CC	386.15 ± 6.88 (BET); 195.60 (BJH)	0.151	3.08 (BJH)

U-CC: Untreated carbon cloth, A-CC: Activated carbon cloth, BJH: Barrett, Joyner, and Halenda, BET: Brunauer-Emmett-Teller

Performance of carbon cloth as a potential high performance AD supplement using BMP assays

Effect of carbon cloth dosing on (a, b) specific cumulative at standard temperature and pressure (STP) (0°C, 1 atm) from municipal sludge. U-CC: untreated carbon cloth, A-CC: activated carbon. Data represent average and error bars represent standard deviations of triplicates.

Results and discussion

Kinetic modeling results of U-CC and A-CC for dose optimization BMP assays

 Table: Kinetic model results

BMP amendment	Rate o	Lag phase	
conditions	(<i>R</i> _m	(λ) (day)	
Control (no CC)		25.46 ± 0.33	4.85 ± 0.05
0.2 g U-CC⁺		15.40 ± 1.51	9.10 ± 0.97
0.4 g U-CC	P<0.05	15.70 ± 2.60	8.09 ± 1.69
0.6 g U-CC		17.25 ± 3.15	7.34 ± 1.12
0.8 g U-CC		32.99 ± 0.87	2.03 ± 0.44
1.0 g U-CC		40.71 ± 1.91	2.11 ± 0.10
1.2 g U-CC	->0.05	42.49 ± 6.11	2.07 ± 0.06
0.2 g A-CC		32.37 ± 0.24	3.36 ± 0.11
0.4 g A-CC		31.03 ± 1.64 P<0.05	2.69 ± 0.81
0.6 g A-CC		35.24 ± 3.00	2.10 ± 0.19
0.8 g A-CC		37.03 ± 11.94	0.31 ± 0.34
1.0 g A-CC		38.17 ± 3.25	1.37± 0.34
1.2 g A-CC		36.82 ± 3.79	1.01 ± 0.39

Modified Gompertz model

$$Y = P \times exp\left[-exp\left\{\frac{Rm \times e}{P}(\lambda - t) + 1\right\}\right]$$

Y = specific cumulative methane production (ml/g-VS_{substrate}) t = time (days)

P = ultimate specific cumulative methane production (ml/g-VS_{substrate})

 R_m = maximum methane production rate (ml/g-VS_{substrate}/d),

e = natural logarithm constant

 $\lambda = \log \text{ phase time (days)}$

^{\pm}VS: volatile solids, CC: carbon cloth, U-CC: untreated carbon cloth, A-CC: activated carbon cloth. BMP: Biochemical methane potential ^{\pm}The dosages of 0.20, 0.40, 0.60, 0.80, 1.00, and 1.20 g carbon cloth correspond to 0.37, 0.74, 1.11, 1.48, 1.85 and 2.22 g U-CC or A-CC/g-VS_{substrate}, respectively. *mean \pm standard deviation of triplicate BMP bottles

Bio-augmentation strategy schematic diagram

SEED: Syntrophic enrichment for enhanced digestion, VFA: Volatile fatty acids, HRT: Hydraulic retention time, SRT: Solid retention time, MS: Mixed sludge, TSPS: Thickened screened primary sludge #Centrifugation condition: 3500 revolution per minutes for 10 minutes

The SEED, Test and Control reactor pictures

Bench-scale reactor vessels at BTG laboratory

SEED reactor (5 L^{*})

Bio-augmentation 1: Liquid bioaugmentation (LB) strategy

SEED reactor (5 L*) *working volume

Increase mixing speed (120 rpm 1 h) in SEED for sloughing off the microbial biomass before bioaugmentation

Frequency of **bio-augmentation 1 (LB)**: 8 days

1500 ml effluent from Test reactor replaced with 1500 ml effluent from SEED reactor.

Test reactor (5 L^{*})

e SEED: Syntrophic enrichment for enhanced digestion, rpm: revolution per minutes

Bio-augmentation 2: Pellet bioaugmentation (PB) strategy

SEED reactor (5 L*)

Increase mixing speed (120 rpm 1 h) in SEED for sloughing off the microbial biomass before bioaugmentation

Frequency of **bio-augmentation 2 (PB)**: 7-15 days

Test reactor effluent was replaced with SEED effluent centrifuged (pellet).

Test reactor (5 L*)

*working volume SEED: Syntrophic enrichment for enhanced digestion, rpm: revolution per minutes

Results and discussion

Specific biogas production for SEED reactor

COD: Chemical oxygen demand, OLR: Organic loading rate, SEED: Syntrophic enrichment for enhanced digestion, AP: acid phase reactor, HRT: hydraulic retention time

Results and discussion

Daily biogas production (comparison of Test and Control reactors)

Impact of bio-augmentation on methane increment at varying hydraulic retention time (HRT)

Results and discussion

Fluorescent microscopy for microbial biofilm analysis

Microscopy images of activated carbon cloth from SEED reactor (at COD of ~3,500 rpm, 20 min) (**a. and c.**) bright field images and (**b. and d.**) flourscent images with FilmTracer[™] SYPRO® Ruby biofilm and DAPI (4',6-diamidino-2-phenylindole) cell staining

Conclusions

Advantages of CC

- Superior performance in terms of COD removal and microbial adhesion.
- Retained within the reactor without washout loss

Two-step activation of CC

- Improves surface area and biocompatibility.
- Optimized dosage 1.48 g A-CC/g-VS_{substrate}

Novel SEED reactor with A-CC

- Pellet bioaugmentation allows active microbial transfer and improved higher methane at shorter HRT.
- Side-stream SEED incubator can be acts a retrofit model in existing treatment plant without modifications.

Science and Engineering Research Board (SERB) Department of Science and Technology (DST) Govt. of India

Results and discussion

Continuous flow digester testing with carbon cloth medium (before and after to bioaugmentation)

Parameters	Test		Control		SEED		
	SRT 20 days	Bio-	Bio-augmentation	SRT 20 days	SRT 10 days		AP reactor
	(No bio-	augmentation	(HRT 10 days)				
	augmentation)	(HRT 20 days)					
% CH ₄	63 (1; 27) [*]	65 (2; 15)	65 (1; 12)	63 (1; 28)	63 (1; 6)	74 (1.22; 54)	NA
рН	7.8 (0.1; 47)	7.6 (0.1; 51)	7.6 (0.1; 13)	7.8 (0.1; 60)	7.7 (0.1; 8)	7.6 (0.1; 30)	NA
Total ammonium nitrogen (mg/l)	1379 (229; 12)	1401 (100; 14)	1499 (199; 10)	1467 (203; 20)	1500 (303; 8)	1083 (0.09; 34)	915 (24; 60)
Total COD removal (%)	67 (1; 12)	74 (2; 14)	70 (1; 10)	66 (1; 20)	64 (1; 8)	88 (2.9; 34)	NA
TS removal (%)	58 (1; 12)	57 (2; 16)	56 (2; 8)	58 (1; 20)	58 (2; 8)	NA	NA
VS removal (%)	68 (0.3; 12)	64 (1; 16)	63 (1; 8)	67 (1; 20)	66 (2; 8)	NA	NA
Alkalinity (mg CaCO ₃ /I)	4905 (198; 12)	4395 (300; 14)	3985 (298; 10)	5189 (199; 20)	3889 (204; 8)	3566 (99; 34)	1450 (42; 20)
VFA (mg/l)	<100	<100	<100	<100	<100	<100	4020 (66; 33)
VFA/Alkalinity ratio (-)	~0.02	~0.02	~0.02	~0.02	~0.02	~0.02	NA
Average biogas (ml/g COD _{added})	373 (23; 90)	508 (71; 81)	576 (88; 95)	383 (43; 137)	306 (37; 103)	478; 58	NA

TS: Total solids, VS: Volatile solids, COD: Chemical oxygen demand, VFAs: Volatile fatty acids (acetic, butyric and propionic acids), OLR: Organic loading rate, SEED: Syntrophic enrichment for enhanced digestion, MS: Mixed sludge, AF: Acid fermenter

Results and discussion

Variation in microbial diversity in BMP reactors utilizing U-CC and A-CC respectively

Microbial fingerprinting analysis of BMP bottles (Batch-4) utilizing A-CC supplement

Synthesis of activated carbon cloth

Characterization of carbon cloth as a potential high performance AD supplement using BMP assays

Effect of untreated carbon cloth (U-CC) and activated carbon cloth (A-CC) addition on **(a, b)** acetic acid, **(c, d)** propionic acid, and **(e, f)** butyric acid accumulation in BMP bottles, respectively. Data represent average and error bars represent standard

Summary of bioaugmentation

Bioaugmentation	Transferred COD from SEED to Test (mg)	Theoretical biogas produced from transferred COD (ml)	Surplus biogas produced after bioaugmentation (ml) [in days]	Biogas increment from bioaugmentation (–theoretical biogas) (ml)	Biogas increment from bioaugmentation (% per day)
bio-Augmentation 1 [BL (I)]	8578	4765	3558.65 [in 7 days]	-1206	-0.55%
bio-Augmentation 1 [BL (II)]	8070	4483	4779 [in 7 days]	296	0.11%
bio-Augmentation 1 [BL (III)]	7620	4033	6100 [in 7 days]	2067	0.84%
bio-Augmentation 2 [BP-1 (I)]	8561	3277	16,942 [in 9 days]	13,665	3.42%
bio-Augmentation 2 [BP-1 (II)]	7302	2795	12,636 [in 7 days]	9,841	3.68%
bio-Augmentation 2 [BP-1 (III)]	7260	2779	20,226 [in 15 days]	16,663	1.30%
bio-Augmentation 2 [BP-1 (IV)]	6346	2429	27,713 [in 16 days]	25,284	1.98%
bio-Augmentation 2 [BP-1 (V)]	5464	2091	26,031 [in 12 days]	23,940	2.53%
bio-Augmentation 2 [BP-1 (VI)]	4715	1805	57,733 [in 21 days]	55,928	2.71%
bio-Augmentation 3 [BP-2 (I)]	11,283	4319	11,515 [in 7 days]	8,216	1.77%
bio-Augmentation 3 [BP-2 (II)]	8618	3299	11,125 [in 7 days]	21,394	1.87%
bio-Augmentation 3 [BP-2 (III)]	7339	2809	23,929 [in 7 days]	21,120	5.39%
bio-Augmentation 3 [BP-2 (IV)]	6636	2540	23,794 [in 7 days]	21,254	5.30%
bio-Augmentation 3 [BP-2 (V)]	4534	1735	24,425 [in 7 days]	22,690	5.64%
bio-Augmentation 3 [BP-2 (VI)]	3694	905	30,736 [in 7 days]	29,831	8.64%
bio-Augmentation 3 [BP-2 (VII)]	3654	1399	47,054 [in 17 days]	58,941	2.39%
bio-Augmentation 3 [BP-2 (VIII)]	3414	1306	30,499 [in 9 days]	29,193	5.18%

Electrical conductivity (RC) of carbon cloth

a. A ribbon of carbon fibers extracted from a woven carbon cloth, **b.** Photograph of the microscope calibration slide. Each division marked on the slide is 10 \Box m wide, **c.** Photograph of a single carbon fiber using the same magnification used in (b), **d.** The sample holder and electrodes used to make the four-probe resistance measurements. The electrodes are made from copper-foil tape, **e.** Photograph of a single carbon fiber sandwiched between two glass slides while lying perpendicularly across the four copper electrodes. Under this magnification, the fiber is difficult to resolve, **f.** Same as (e), but at a higher magnification.

Summary of bioaugmentation

	Bioaugmentation date	Date	Volume transferred from SEED to Test (ml)	Transferred COD from SEED to Test (mg)	% Volume of Test reactor replaced	Status
SRT= 20 days	bio-Augmentation 1 [BL (I)]	Feb 24, 2022	1500 ml (liquid SEED Effluent)	8578	30%	\checkmark
	bio-Augmentation 1 [BL (II)]	Mar 02, 2022	1500 ml (liquid SEED Effluent)	8070	30%	\checkmark
	bio-Augmentation 1 [BL (III)]	Mar 09, 2022	1500 ml (liquid SEED Effluent)	7620	30%	\checkmark
	bio-Augmentation 2 [BP-1 (I)]	Mar 23, 2022	2000 ml centrifuged (82 g) SEED pellets	8561	1.6%	\checkmark
	bio-Augmentation 2 [BP-1 (II)]	April 1, 2022	2000 ml centrifuged (68 g) SEED pellets	7302	1.4%	\checkmark
	bio-Augmentation 2 [BP-1 (III)]	April 8, 2022	2000 ml centrifuged (67 g) SEED pellets	7260	1.4%	\checkmark
	bio-Augmentation 2 [BP-1 (IV)]	April 23, 2022	2333 ml centrifuged (40 g) SEED pellets	6346	0.7%	\checkmark
	bio-Augmentation 2 [BP-1 (V)]	May 9, 2022	2333 ml centrifuged (34 g) SEED pellets	5464	0.7%	\checkmark
	bio-Augmentation 2 [BP-1 (VI)]	May 23, 2022	2333 ml centrifuged (33 g) SEED pellets	4715	0.7%	\checkmark
	bio-Augmentation 3 [BP-2 (I)]	July 18, 2022	2000 ml centrifuged (88 g) SEED pellets	9283	2.5%	\checkmark
	bio-Augmentation 3 [BP-2 (II)]	July 25, 2022	2000 ml centrifuged (72 g) SEED pellets	8618	2.1%	\checkmark
	bio-Augmentation 3 [BP-2 (III)]	August 1, 2022	2000 ml centrifuged (60 g) SEED pellets	7339	1.7%	\checkmark
SRT= 10 days	bio-Augmentation 3 [BP-2 (IV)]	August 8, 2022	2000 ml centrifuged (36 g) SEED pellets	6636	1%	\checkmark
	bio-Augmentation 3 [BP-2 (V)]	August 15, 2022	1400 ml centrifuged (34 g) SEED pellets	4534	1%	\checkmark
	bio-Augmentation 3 [BP-2 (VI)]	August 22, 2022	1400 ml centrifuged (34 g) SEED pellets	3694	1%	\checkmark
	bio-Augmentation 3 [BP-2 (VII)]	August 30, 2022	1200 ml centrifuged (36 g) SEED pellets	3654	1%	\checkmark
	bio-Augmentation 3 [BP-2 (VIII)]	Sept 15, 2022	1200 ml centrifuged (36 g) SEED pellets	3414	1%	\checkmark

Bio-augmentation 1 (BL)

- BL (I) COD of <u>SEED-CC effluent</u>: 5719 mg/L
- BL (II) COD of <u>SEED-CC effluent</u>: 5380 mg/L
- BL (III) COD of <u>SEED-CC effluent</u>: 5080 mg/L

Volume of SEED effluent transferred to Test: 1500 ml

Supplementary slides

Total COD added to Test reactor: 5719 mg/L X 1.500 L = 8578.5 mg

All transferred COD are biodegradable

1g COD 🗩 0.35 L CH₄ 8.578 g 🗩 3.00 L CH₄

Theoretical biogas generated from COD transferred: $3 \times 100/63 = 4762$ ml biogas

Extra biogas generated from Test reactor = 3917 ml (in 6 days)

Biogas produced from bioaugmentation process = (3917-4762) = -844 ml

(SRT = 20 days)

Bio-augmentation 1 (BL)

- BL (I) COD of <u>SEED-CC effluent</u>: 5719 mg/L
- BL (II) COD of <u>SEED-CC effluent</u>: 5380 mg/L
- BL (III) COD of <u>SEED-CC effluent</u>: 5080 mg/L

Volume of SEED effluent transferred to Test: 1500 ml

Total COD added to Test reactor: 5719 mg/L X 1.500 L = 8578.5 mg

All transferred COD are biodegradable

1g COD 🗩 0.35 L CH₄ 8.578 g 🚬 3.00 L CH₄

Theoretical biogas generated from COD transferred: $3 \times 100/63 = 4762$ ml biogas

Extra biogas generated from Test reactor = 3917 ml (in 6 days)

Biogas produced from bioaugmentation process = (3917-4762) = -844 ml

Calculation COD basis for bioaugmentation 2

Supplementary slides

Bio-augmentation 2 (BP-1)

(SRT = 20 days)

- COD of <u>SEED-CC effluent</u>: 5719 mg/L; Weight of SEED <u>pellet</u>: 82 g/2000 ml **BP-1 (I)** COD of SEED-CC effluent: 5100 mg/L; Weight of SEED pellet: 68 g/2000 ml **BP-1 (II)**
- **BP-1 (III)** COD of SEED-CC effluent: 5080 mg/L; Weight of SEED pellet: 67 g/2000 ml
- **BP-1 (IV)** COD of SEED-CC effluent: 4200 mg/L; Weight of SEED pellet: 40 g/2333 ml
- **BP-1 (V)** COD of SEED-CC effluent: 3800 mg/L; Weight of SEED pellet: 34 g/2333 ml **BP-1 (VI)**
 - COD of SEED-CC effluent: 3500 mg/L; Weight of SEED pellet: 33 g/2333 ml

Total COD (pellets) added to Test reactor = COD of SEED effluent – COD of centrifuged SEED (filtrate)

= (5719 mg/L X 2.000 L) - (1500 mg/L X 1.918 L)

= (11438 mg) - (2877 mg)

= 8561 mg

If 70% is biodegradable: 0.7 X 8561 = 6000 mg

```
1g COD 🗩 0.35 L CH4
                                             6.000 g 2.10 L CH<sub>4</sub>
                 Theoretical biogas generated from COD transferred:
                           2.10 X 100/64 = 3281 ml biogas
```

Extra biogas generated from Test reactor = 17236 ml (in 9 days)

Biogas produced from bioaugmentation process = (17,236-3281) = 13,955 ml

Bio-augmentation 2 (BP-2)

(SRT = 10 days)

BP-2 (I): COD of <u>SEED-CC effluent</u>: 5719 mg/L; Weight of SEED <u>pellet</u>: 88 g/2000 ml
BP-2 (II): COD of <u>SEED-CC effluent</u>: 5100 mg/L; Weight of SEED <u>pellet</u>: 72 g/2000 ml
BP-2 (III): COD of <u>SEED-CC effluent</u>: 5080 mg/L; Weight of SEED <u>pellet</u>: 66 g/2000 ml
BP-2 (IV): COD of <u>SEED-CC effluent</u>: 4200 mg/L; Weight of SEED <u>pellet</u>: 36 g/2000 ml
BP-2 (V): COD of <u>SEED-CC effluent</u>: 3800 mg/L; Weight of SEED <u>pellet</u>: 34 g/1400 ml
BP-2 (VI): COD of <u>SEED-CC effluent</u>: 3500 mg/L; Weight of SEED <u>pellet</u>: 34 g/1400 ml
BP-2 (VI): COD of <u>SEED-CC effluent</u>: 4500 mg/L; Weight of SEED <u>pellet</u>: 36 g/1200 ml
BP-2 (VII): COD of <u>SEED-CC effluent</u>: 4300 mg/L; Weight of SEED <u>pellet</u>: 36 g/1200 ml

Total COD (pellets) added to Test reactor = COD of SEED effluent – COD of centrifuged SEED (filtrate)

= (5719 mg/L X 2.000 L) - (1500 mg/L X 1.918 L)

= (11438 mg) - (2877 mg)

= 8561 mg

If 70% is biodegradable: 0.7 X 8561 = 6000 mg

Extra biogas generated from Test reactor = 17236 ml (in 9 days)

Biogas produced from bioaugmentation process = (17,236-3281) = 13,955 ml

Microbial colonization of carbon cloth medium

Microscopy images of activated CC after 30 days of bioreactor incubation by unfiltered light micrograph (A, B) and 461nm-filtered light micrograph for DAPI cell staining (C).