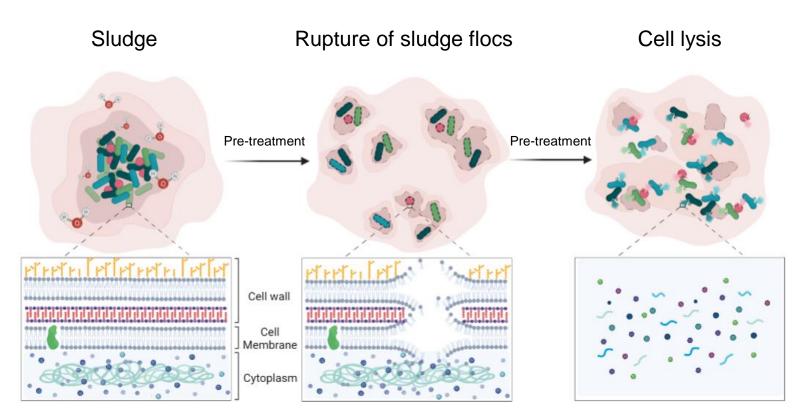


10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

Evaluation of the optimal sewage sludge pre-treatment technology through continuous reactor operation

G.-C. Mitraka^{1,2}, K.N. Kontogiannopoulos¹, A.I Zouboulis², P.G. Kougias¹

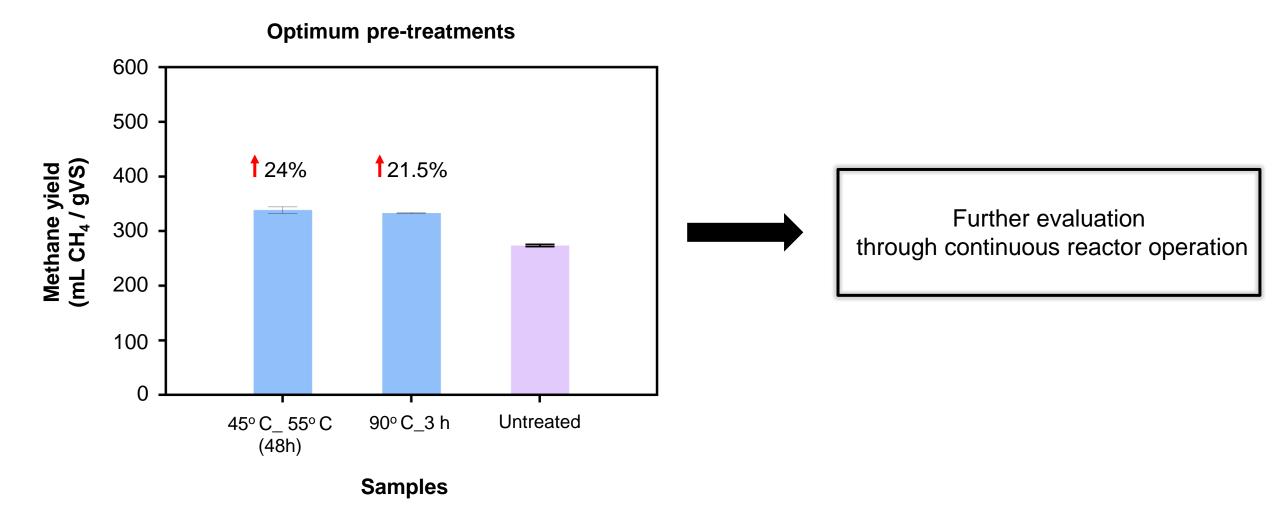
¹Soil and Water Resources Institute, Hellenic Agricultural Organization – Dimitra, Thermi, Greece ²Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece



Pre-treatment's beneficial aspects

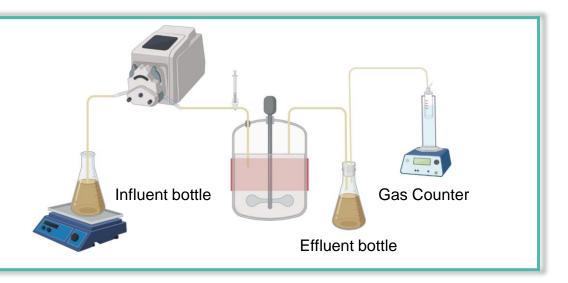
- Rupture of sludge flocs
 - Particle size reduction
 - Increased surface area
 - Enhanced hydrolysis
- Rupture of EPS and cell walls
 - Release of intracellular organic substances
 - Increased bioavailability

✓ Enhanced Anaerobic Digestion efficiency
✓ Increased Biogas Production



Thermal Hydrolysis	
1	45°C for 48 h and then 55°C for extra 48 h
2	45°C for 72 h and then 55°C for extra 72 h
3	45° C for 72 h and then 55° C for extra 72 h under 0.5 bar of CO ₂ pressure
4	45° C for 72 h and then 55° C for extra 72 h under 1.0 bar of CO ₂ pressure
5	90° C for 3 h
6	90°C for 3 h under 0.5 bar of CO ₂ pressure
7	90°C for 3 h under 1 bar of CO ₂ pressure
Alkaline Hydrolysis	
8	2% v/v NaOH
9	4% v/v NaOH
Thermochemical pre-treatments	
10	4% v/v NaOH, 45°C for 72 h and then 55°C for extra 72 h
11	4% v/v NaOH, 45° C for 72 h and then 55° C for extra 72 h, under 0.5 bar of CO_2 pressure
12	4% v/v NaOH, 45° C for 72 h and then 55° C for extra 72 h, under 1 bar of CO_2 pressure
13	4% v/v NaOH and 90° C for 3 h, under 0.5 bar of CO_2 pressure
14	4% v/v NaOH and 90° C for 3 h, under 1 bar of CO ₂ pressure

Aim & Objectives

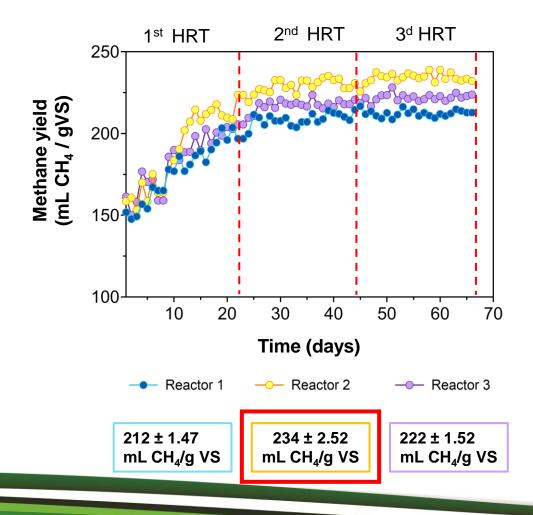


06-Jul-23 | Slide 4

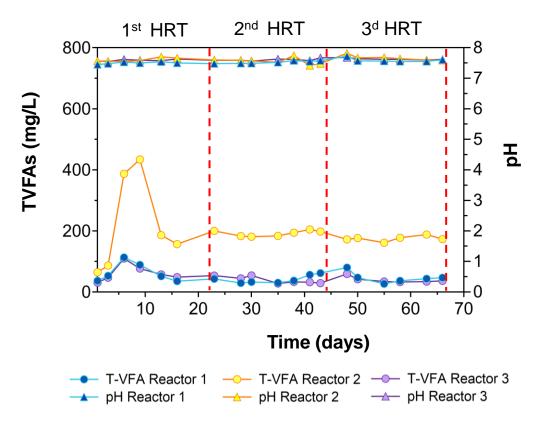
Experimental set-up

- 3 CSTRs
 - Reactor 1: **Un**-treated sludge
 - Reactor 2: **Pre**-treated sludge (45°C for 48 h & 55°C for 48 h) Reactor 3: **Pre**-treated sludge (90°C for 3 h)
- Mesophilic Conditions (37 ± 2° C)
- 3 periods → Increasing Organic Loading Rate (OLR)
- Biochemical parameters x2/week
- DNA extraction (Period 1 and Period 2) → Effect of sludge thickening on microbial community

1st Experimental Period

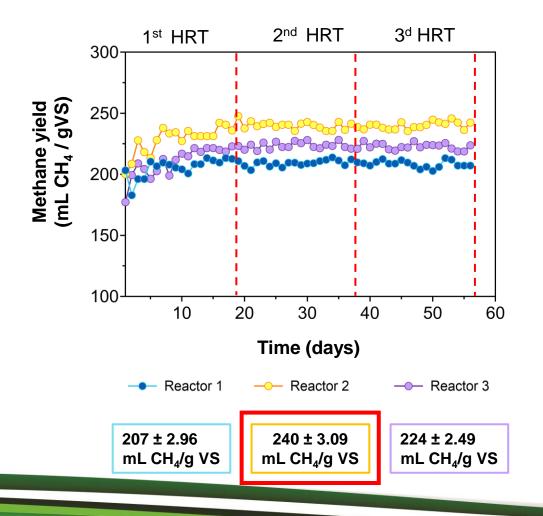


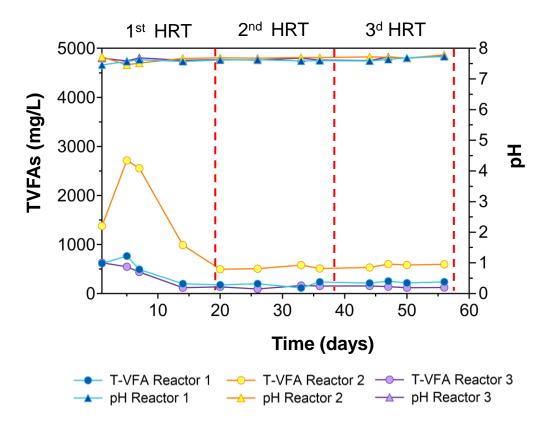
- Hydraulic Retention Time: HRT = 22 days
- OLR = 1 (g VS/(LReactor*day))



2nd Experimental Period

- Feeding: Thickened Sludge
- Hydraulic Retention Time: HRT = 22 days
- OLR = 2 (g VS/(L_{Reactor}*day))





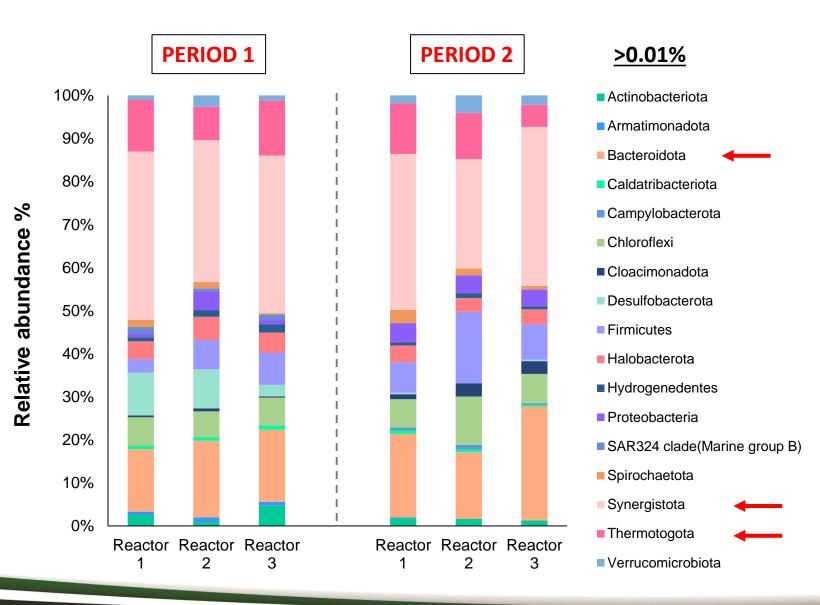
3rd Experimental Period

- Feeding: Thickened Sludge
- Hydraulic Retention Time: HRT = 18 days
- OLR = 2.5 (g VS/($L_{Reactor}^*$ day))

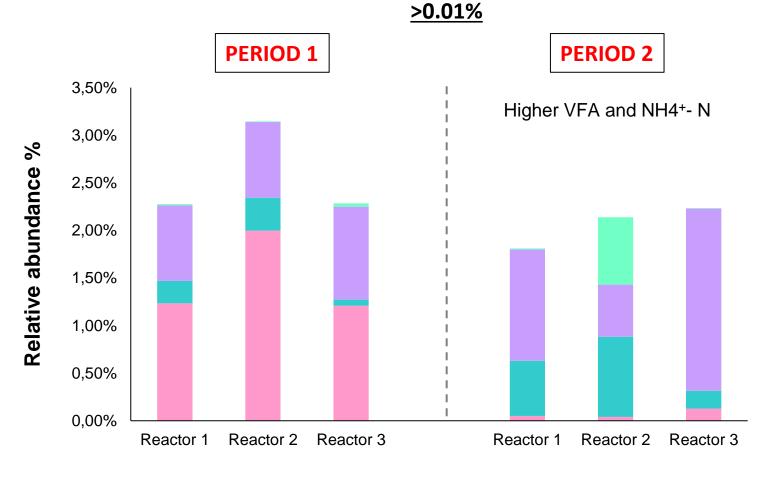
Sol and Water Resources Institute

Most abundant

Synergistota:


Thermovirga sp.: can degrade amino acids, but also reported to participate in the direct interspecies electron transfer (DIET) of microorganisms.

Thermotogota:


Mesotoga sp.: linked to the syntrophic acetate oxidation.

Bacteroidota:

DMER64 sp.: anaerobic mesophilic acetogens usually present in various of digester systems and reported to involve in interspecies hydrogen transfer (IHT) as main H₂ carriers.

- *Methanocorpuscullum* sp.: hydrogenotrophic * methanogens that can be negatively affected by acetate, propionate and total ammonium nitrogen (TAN).
- *Methanoculleus* sp.: Hydrogenotrophic * methanogens with positive correlation to TAN.
- Methanosarcina sp.: metabolically versatile * microorganisms and vulnerable to process inhibitors such as free ammonia and VFAs.
- Methanosaeta sp: core genus involved in * aceticlastic pathway.

Methanosarcina Methanoculleus Methanosaeta Methanocorpusculum

- 1. Foam sampling from **each** effluent bottle
- 2. DNA extraction & 16S rRNA amplicon sequencing
- > 0.5% abundance in all the samples

Corynebacteriales order:

- ✤ Corynebacterium sp.
- ✤ Mycobacterium sp.
- ✤ Gordonia sp.

Reactor

Effluent bottle

Sol and Water Resources Institut

- The reactor fed with sludge pretreated at 45° C for 48h and then at 55°C for additional 48h led to the highest performance in terms of methane yield, during all the experimental periods examined.
- ✓ A further increase in organic loading rate up to 2.5 gVS L_{Reactor}⁻¹d⁻¹ did not lead to higher efficiencies in terms of methane yield.
- ✓ Sludge thickening altered the bacterial and archaeal communities of the reactors during the second experimental period, as a response to the incremental change in TS content and unfavorable environment (i.e. VFA stress).
- ✓ Foam forming filamentous bacteria were detected in all the samples obtained from effluent bottles during period 2 and OLR equal to 2 gVS L_{Reactor}⁻¹d⁻¹.

- ✓ Total volume approx. 800 L
- ✓ Working volume approx. 600 L
- ✓ Mesophilic conditions
- ✓ Two-stage thermal pre-treatment

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK-01293, BiogasUp).

Thank you for your attention!

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 20 - 25 JUNE 2023

Evaluation of the optimal sewage sludge pre-treatment technology through continuous reactor operation

G.-C. Mitraka^{1,2}, K.N. Kontogiannopoulos¹, A.I Zouboulis², P.G. Kougias¹

¹Soil and Water Resources Institute, Hellenic Agricultural Organization – Dimitra, Thermi, Greece ²Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

