

INRA

Lactic Acid Fermentation as Storage Method of Food Waste Prior to Dark Fermentation

Eqwan Roslan, J.A. Magdalena, H. Mohamed, A. Akhiar, A.H. Shamsuddin, H. Carrere, E. Trably

10th International Conference on Sustainable Solid Waste Management Chania, Greece

22nd June 2023

Organic carbon losses during storage / transport [1] Fermentation can occur during transport [2]

Storage is necessary to preserve the Biohydrogen Potential (BHP) of Food waste (FW)

INRA

[1] O. Parthiba Karthikeyan, E. Trably, S. Mehariya, N. Bernet, J. W. C. Wong, and H. Carrere, "Pretreatment of food waste for methane and hydrogen recovery: A review," *Bioresour Technol*, vol. 249, no. July 2017, pp. 1025–1039, 2018, doi: 10.1016/j.biortech.2017.09.105.

[2] A. Noblecourt, G. Christophe, C. Larroche, and P. Fontanille, "Hydrogen production by dark fermentation from pre-fermented depackaging food wastes," *Bioresour Technol*, vol. 247, no. July 2017, pp. 864–870, 2018, doi: 10.1016/j.biortech.2017.09.199.

Lactic Acid Fermentation (LAF) as Substrate Storage

LAF for food storage

Used to **preserve food** for probably 3000 years [3]

Ensiling for animal feed

Part of ensiling process, used to preserve crops / produce silage for animal feed. Objective: preserve nutrition [5].

LAF for waste valorization to chemicals

Recently been used to produce higher value products (chemicals) [4].

Ensiling for biomethane

INRA

[3] J. M. Wilkinson, K. K. Bolsen, and C. J. Lin, "History of Silage," in Silage Science and Technology, 2003. doi: https://doi.org/10.2134/agronmonogr42.c1.

[4] C. Chenebault, R. Moscoviz, E. Trably, R. Escudié, and B. Percheron, "Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization," Bioregour Jechnol vol. 354, no. April, 2022, doi: 10.1016/j.biortech.2022.127230.

[5] R. Villa, L. Ortega Rodriguez, C. Fenech, and O. C. Anika, "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," *Renewable and Sustainable Energy Reviews*, vol. 134, no. September, p. 110401, 2020, doi: 10.1016/j.rser.2020.110401

Lactic Acid in Dark Fermentation

[6] M. lou Hillion et al., "Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion," Waste Management, vol. 71, pp. 147–155, 2018, doi: 10.1016/j.wasman.2017.10.024.

[7] O. García-Depraect et al., "A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes," Bioresour Technol, vol. 324, no. December 2020, 2021, doi: 10.1016/j.biortech.2020.124595.

[8] A. Ohnishi, Y. Hasegawa, N. Fujimoto, and M. Suzuki, "Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as Lactate-driven dark fermentation," Bioresour Technol, vol. 343, no. September 2021, p. 126076, 2022, doi: 10.1016/j.biortech.2021.126076.

[9] A. Ohnishi, Y. Hasegawa, S. Abe, Y. Bando, N. Fujimoto, and M. Suzuki, "Hydrogen fermentation using lactate as the sole carbon source: Solution for 'blind spots' in biofuel production," RSC Adv, vol. 2, no. 22, pp. 8332–8340, 2012. doi: 10.1039/c2ra20590d.

> Materials: Food waste

INRA

INRA

р. 6

> Metabolites production during storage

INRA

Homolactic pathway: Glucose \rightarrow 2Lactate Heterolactic pathway: Glucose \rightarrow Lactate + Ethanol + CO₂ Ethanolic pathway: Glucose \rightarrow 2Ethanol + 2CO₂

Reaction advancement after storage

INRA@

> Hydrogen production via dark fermentation

Substrate storage temperature (°C)	P _m , maximum production (mL/gVS)	R _m , maximum production rate (mL/gVS·d)	λ , lag phase (d)
Fresh FW (Control)	76.8±11.9 ^a	29.3±11.1 ^a	0.8±0.1 ^{cd}
4	80.0±5.7 ^a	46.1±5.9 ^{ab}	0.4±0.1ª
10	89.3±0.5 ^a	53.4±10.1 ^{ab}	0.7±0.0 ^{bc}
23	79.0±5.1ª	71.8±17.8 ^b	1.1±0.0 ^e
35	94.0±19.9ª	69.5±14.3 ^b	0.5±0.1 ^{ab}
45	83.4±2.1ª	57.8±10.6 ^{ab}	
55	141.4±34.6 ^t	75.6±20.6 ^b	Rm increased by at leas

Statistically similar yield except for storage at 55°C (~83% higher)

Initial and final metabolites concentration in dark fermentation

Microbial community present at the end of storage

Lactobacillus sp.: Homolactic or heterolactic (species dependent) Streptococcus sp.: Homolactic, heterolactic when carbohydrate-restricted Lactococcus sp.: Homolactic Weissella sp.: Heterolactic, ethanol with lactate Pseudomonas: Strictly aerobic, some species can be anaerobic using nitrate Pediococcus sp.: Homolactic or heterolactic

Microbial community present at the end of dark fermentation

LAB and HPB co-existence in DF reactors
HPB emerged even after low pH storage

INRAe

- Food waste can be stored in a wide range of temperatures in LAF without affecting its biohydrogen potential (BHP)
- Requires no energy for temperature maintenance during storage
- Indigenous Hydrogen Producing Bacteria can withstand low pH environment during storage and re-emerge after
- Enables decentralized storage system and demand-oriented collection [10]
- Has potential to manage seasonality of food waste.

INRAe

[10] M. Wehner et al., "Decentralised system for demand-oriented collection of food waste - assessment of biomethane potential, pathogen development and microbial community structure," Bioresour Technol, vol. 376, no. March, p. 128894, 2023, doi: 10.1016/j.biortech.2023.128894.

INRA

Questions? Thank you!

Eqwan

Email: Eqwan@uniten.edu.my

