

10th International Conference on Sustainable Solid Waste Management Chania, Greece, 21 - 24 JUNE 2023

The effect of digestate on indigenous soil microbial communities and mesofauna diversity and activity

C. Nikolaidou¹, M. Mola^{1,2}, M. Gaspari¹, N. Monokrousos², V. G. Aschonitis¹, P.G. Kougias¹

¹Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, Thermi, 57001, Greece

²University Center of International Programmes of Studies, International Hellenic University, 57001 Thessaloniki, Greece

c.nikolaidou@swri.gr

0000-0001-9907-7785

Digestate production & applications

- Anaerobic waste treatment plants produce a vast amount of by-product, called "Digestate"
- Rich in nutrients & low organic load
- In 2019 European Commission authorized its use as fertilizer component on crop lands.
- Characterization of the harmful or beneficial impacts on the environment is crucial

Impact of digestate on plant & soil health

- Crop productivity increase (crop growth rates and yields).
- The impact on the whole soil biological quality is still unclear.
- The soil biological quality is defined as the capacity of a soil to host a large quantity and diversity of organisms
 - > promote organic matter degradation
 - create barrier effect to pathogens
 - maintain the soil structure
 - reduce plant sensitivity to drought

Soil health parameters

Microbial communities

Actively participate in nutrient cycling, plant development and disease prevention.
 Few studies have been conducted that compare changes in soil microbial populations after digestate application.

Metabolic activities

- The enzyme activity associated with the soil microbial communities is a key element.
 They mediate numerous chemical reactions involved in soil nutrient evolved.
- They mediate numerous chemical reactions involved in soil nutrient cycling.

Nematodes

- Neglected soil taxonomic group
- Prevalent metazoan in the soil biota
- Widely used as biological markers
- * Reflect soil's physico-chemical conditions & the microorganisms that inhabit it

Aim & Objectives

In depth investigation of the effect of **digestate application** on the soil in comparison with a **conventional fertilizer** and their **combination** not from a fertilization perspective, but in terms of

- microbial diversity
- nematode diversity
- enzyme activity

Experimental layout

06-Jul-23 | Slide 6

Microbial community diversity & patterns

- In total 61 taxa >0.01% abundance identified
- Higher α-diversity indices in treatments with digestate and mixed fertilization
- Conventional fertilizer presented no differences with control

NMDS: Community similarities based on distances

06-Jul-23 | Slide 8

Prevalent microbial taxa

- Bacillus sp. and Pseudomonas sp.: ubiquitous Plant Growth Promoting Bacteria (PGPB) in soil and make nutrients like P and Fe accessible - biocontrol agents.
- Anaeromyxobacter and Lentimicrobium genera: involved in N cycle and contribute to mitigation of N₂O emissions and removal of high concentrations of NO₃- from the soil.
- Candidatus saccharimonas sp.: positive correlations with metabolites involved in amino acid biosynthesis
- Crocinitomix sp.: produce catalase, an enzyme that protects cells from oxidative damage

Enzyme activity

N cycle: Digestate treatment did not differ significantly from control and the other ammonia nitrate enriched treatments.

C cycle: Mixed treatment had the highest activity indicating higher depolymerization of organic substrates for assimilation of N.

P cycle: Mixed treatment had the highest activity indicating higher mineralization of P from soil organic matter.

Nematodes' community composition

✤ 17 genera in total

- Fertilization shifted community to bacterivores
 Bacterial over fungal dominance
 Easily degradable organic compounds in fertilized soils
- Herbivores' abundance was reduced after digestate application
- A group that causes major problems to crops and is difficult as well as expensive to control.

- Digestate application either alone, either as a complement to conventional fertilizers induced higher biodiversity indices, introducing new genera to the soil biota that participate in nutrient cycling, amino-acid biosynthesis and in the protection from abiotic stress.
- Soils fertilized with digestate as an exclusive nutrient source presented the same enzyme activity with conventional fertilized soils with even higher nutrient inputs.
- Herbivore nematodes- which are common and harmful pests for crops- were suppressed after digestate application, something that was not observed in the other fertilizing treatments.

Applications:

- > Use of digestate as a **soil conditioner** for the **restoration** of intensively exploited areas
- > Basal fertilization of fields before cultivation for the microbial enrichment of the soil

Future research:

Project upgrade to pilot maize crops to take into account the plant effect on a large-scale soil biocommunity and vice versa.

Acknowledgements

This research was carried out as part of the project «BiomassRCM» under the frame of the Action «Investment Plans of Innovation» of the Operational Program «Central Macedonia 2014-2020»

BiomassRCM

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. Περιφέρειας Κεντρικής Μακεδονίας

Ευρωπαϊκή Ένωση Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Thank you for your attention!

06-Jul-23 | Slide 14