From misused feedstocks to valuable air purification materials

CHANIA2023: 21-24 June
Netpore cost action CA20126

Mariem Zouari
Assistant Researcher/ PhD student
Renewable Material Composites
InnoRenew CoE and University of Primorska

10th International Conference on Sustainable Solid Waste Management (CHANIA 2023)

Horizon 2020 Framework Programme of the European Union; H2020 WIDESPREAD-2-Teaming: #739574
Overview

- Olive stone
 - 10% of the fruit weight
 - In Europe, olive solid wastes are estimated at 10 million tonnes annually

- Arundo donax
 - Invasive species: 10th among the 100 worst invasive species in the world
 - Fast growth rate: 38 tons of dry matter/ha/year

Huge amount of agricultural solid waste
Overview

Valorization by thermal conversion => Slow pyrolysis

- Sustainable approach
- Profitability
- Added-value products

Biochar is the solid residue generated during the thermal decomposition of organic matter under high temperature and inert conditions.

- Low cost
- Widely available
- Porous structure and large surface area
- Functional groups
- Frequently applied as adsorbent for organic and inorganic pollutants
- Tailorable properties

Suitable adsorbent for VOCs
Research Aim

Preparation of the biochar from under-utilized biomass and application in formaldehyde remediation

Direct effects on human health

Nausea Headache Skin irritation Cancer Lungs damage Death
Preparation of the biochar particles

Pre-pyrolysis treatment

- High impurities and ash content:
 - Cleaning
 - Grinding
 - Demineralization: 1h, 60°C

Pyrolysis

- Optimized parameters:
 - Nitrogen, 300°C-800°C, 30min, heating rate 1500 °C/h

Post-pyrolysis treatment

- Wet ball milling
 - 30min
- Activation of one sample (800°C): CO₂
Characterization & Formaldehyde adsorption tests

- Physical composition
- FTIR
- Physisorption
Effect of pyrolytic temperature on Porosity

- Higher pyrolysis temperatures favored the thermal degradation => more volatiles were released and created cavities and pores in the biochar.
- Larger porosity and microporosity.
- The activation increased the SA by 43%.
- The activation increased the microSA by 14%.
Formaldehyde removal efficiency

- Positive correlation between FA removal and SA, Micro SA, and carbon content
- Multiple regression: only microporous SA had significant influence
- Type of biomass didn’t influence the performance of biochar in removing formaldehyde
- Occurrence of micropores in the was the key parameter for efficient formaldehyde removal

Graph

- Arundo donax biochar
- Olive stone biochar

Formaldehyde removal, % (Per-1g of BC, 1 h STD)

- Pyrolysis temperature, °C
- Activated AD-BC800
Formaldehyde removal efficiency

- Small size of the formaldehyde molecule, 0.25 nm was likely favorable for filling narrow micropores
- Relation between adsorption capacity, pore size, and adsorbate size

![Graph showing formaldehyde removal efficiency](image)

0.3 nm 0.8 nm
Formaldehyde removal mechanism

- Interaction with formaldehyde molecules via polar and non-polar interactions
- FA diffused into the amorphous structure
- Physical adsorption assisted by the developed porous structure and large surface area: pores filling
Formaldehyde removal in function of time

Equilibrium was reached after 20min => saturation of the biochar
Reusability test

- Thermal regeneration in the oven for 1h at 80°C
- At the 5th cycle the adsorption capacity dropped by 13%
- Structural changes caused by several thermal regenerations
Conclusion and perspectives

- Biochar form olive stone and *Arundo donax* was successfully used for capturing formaldehyde.

- Limitation: Saturation of biochar pores

- Future research: Doping biochar with active photocatalysts to enable continuous formaldehyde removal through integrated adsorption-photocatalytic degradation technology.
Thank you for your Attention.

Acknowledgement goes to NETPORE cost action (CA20126) for providing ITC grant and supporting participation in CHANIA 2023

This research was financially supported by:

- The European Commission through the InnoRenew project (Grant agreement #739574 under the Horizon 2020 WIDESPREAD-574-2-Teaming program).
- The Republic of Slovenia through investment funding from the Republic of Slovenia and the European Regional Development Fund.
- The ForestValue Research Program and Republic of Slovenia’s Ministry of Education, Science and Sport through BarkBuild project (C3330-21-252003).