Exploring the Potential Use of Monoethanolamine-Based Lixiviants for Lead Extraction from Zinc Calcine and Zinc Leaching Residue

Nor Kamariah, Prof. Dr. Koen Binnemans, Dr. Jeroen Spooren
S. Shao et al. (2022) "A review on the removal of magnesium and fluoride in zinc hydrometallurgy".

[1]
For 1 ton of Zn produced → 0.5-0.9 ton of zinc leach residue (ZLR) generated

- ZLR is generally landfilled
- ZLR still contains valuable metals, e.g. Zn, Cu, Ag, Pb

Pb used: batteries, ammunition, radiation protection material.

Produced as a by-product of Zn processing → Pb as insoluble anglesite (PbSO₄).

What we study:
- Pb is extracted in the first step, directly from zinc calcine (ZC)
- The method is applied to extract Pb from ZLR
- Preventing the generation of strongly acidic ZLR
- Avoiding high lixiviant consumption

What we apply:
Alkaline lixiviant based on monoethanolamine (MEA)
MEA: a bifunctional solvent with amine and hydroxyl functional group

\[\text{H}_2\text{N-CH}_2-\text{CH}_2-\text{OH} \]

Industrial application:
CO\(_2\) adsorber
Wood preservation
Surfactant

Application in metal extraction:
Recovery of Pb from waste battery scrap by leaching in mono-, di- and triethanolamine (MEA, DEA, TEA) in aqueous solution\(^2\)

\[
Pb\text{SO}_4 (s) + \text{TEA (aq)} \rightarrow Pb(\text{TEA})^{2+} \ \text{SO}_4^{2-} (\text{aq})
\]

\[\begin{align*}
\text{M} & \quad \text{H}_2\text{N} \\
\text{C}_2\text{H}_4 & \quad \text{OH} \\
\text{NH}_2 & \quad \text{H}_4\text{C}_2\text{O}
\end{align*} \]

[3]

[4]
Elemental Composition (wt%)

<table>
<thead>
<tr>
<th></th>
<th>Zn</th>
<th>Pb</th>
<th>Fe</th>
<th>Si</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZC</td>
<td>53</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ZLR</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Mineralogical Analysis

- **A** - Anglesite (PbSO₄)
- **F** - Franklinite (ZnFe₂O₄)
- **W** - Willemite (Zn₂SiO₄)
- **ZO** - Zn oxide (ZnO)
- **Gy** - Gypsum (CaSO₄·2H₂O)
- **P** - Plumbojarosite (Pb₀.₅Fe(SO₄)₂(OH)₆)

Relative Intensity (a.u) vs 2 theta (deg)
Preliminary Leaching Test

- Leaching in pure MEA is selective, but low LE
- The addition of ammonium salts increased the extraction of both Pb & Zn → higher LE, less selective

(T=25 °C; t=3 h; S/L ratio=1/10; stirring speed=500 rpm)
The minimum ammonium salt concentration and leaching time are required to achieve high LE.

- Pure MEA & MEA-(NH$_4$)$_2$SO$_4$ dissolved anglesite; zinc phases remained insoluble
<table>
<thead>
<tr>
<th>Leaching Treatment</th>
<th>Pb (%)</th>
<th>Zn (%)</th>
<th>Fe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-Leaching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA+(NH₄)₂SO₄; 120, 150 °C; 15, 30, 60 min</td>
<td>0.2 – 0.6</td>
<td>3.0 – 5.1</td>
<td>19.4 – 25.9</td>
</tr>
<tr>
<td>Water Bath Leaching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA+(NH₄)₂SO₄; 100 °C; 4.5 h</td>
<td>0.1 ± 0.0</td>
<td>14.9 ± 0.6</td>
<td>21.1 ± 1.3</td>
</tr>
<tr>
<td>Room Temperature Leaching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEA+(NH₄)₂SO₄; 25 °C; 3, 6, 12, 24 h</td>
<td>0.1-0.3</td>
<td>17.4-19.5</td>
<td>-</td>
</tr>
</tbody>
</table>
Negligible Pb yield due to reductive leaching → PbSO₄ is transformed into PbS.
- MEA-lixiviant can leach Pb from anglesite phases in zinc calcine
- ZLR leaching in the MW can destruct plumbojarosite phases
- MEA-lixiviant can not leach Pb from zinc leaching residue \rightarrow reductive leaching to produce galena (PbS)
- On-going work: to understand reductive leaching of ZLR
Thank you

This project has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 812580.