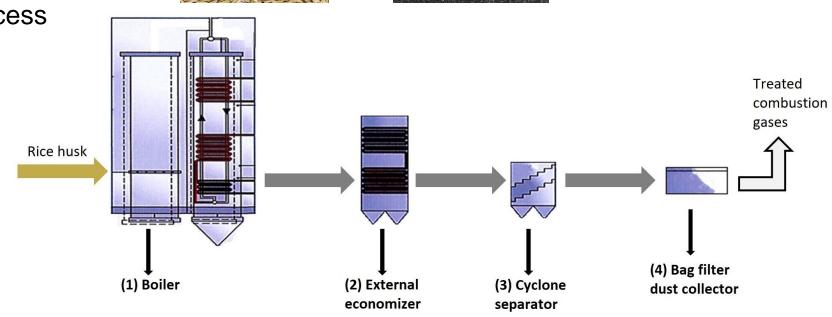
FACULTAD DE INGENIERÍA URUGUAY Valorization of rice husk chars as adsorbent: characterization and utilization in a novel reactor operating mode

Lacuesta, J.¹, Tancredi, N.², Gutiérrez, S.¹

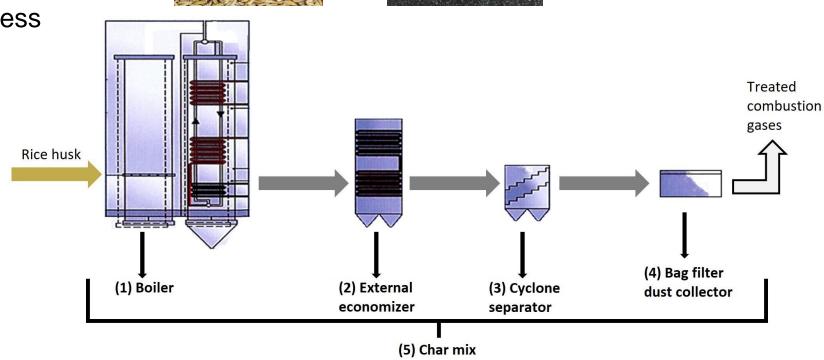
- ¹ Chemical & Process Systems Engineering Group, Chemical Engineering Institute, Faculty of Engineering, Universidad de la República, Montevideo, Uruguay
- ² Area de Fisicoquímica y Laboratorio de Fisicoquímica de Superficies, Facultad de Química, Universidad de la República, Montevideo, Uruguay

10th International Conference on Sustainable Solid Waste Management Chania, Greece, June 2023


Rice husks

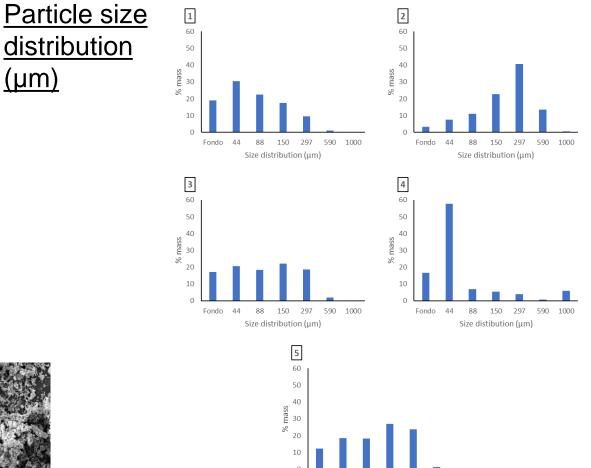
- Rice husks are incinerated to produce energy and steam
- Problem: Rice husk char
 - Process

Possible uses: Silica production Cement Adsorbent


Rice husks

- Rice husks are incinerated to produce energy and steam
- Problem: Rice husk char
 - Process

Possible uses: Silica production Cement Adsorbent

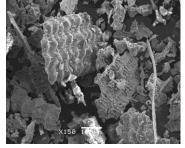

Aims and objectives

 Study the rice husk chars obtained in the industry as adsorbents to remove compounds from water

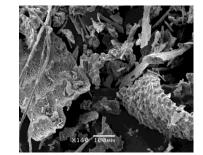
 Evaluate the use of the rice husk char in an adsorption reactor, and model its operation

Characterization of rice husk chars

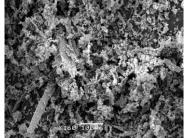
Density	Char	Density (g/cm ³)
Density	Boiler (1)	0.37
	Economizer (2)	0.15
	Cyclone separator (3)	0.19
	Bag filter (4)	0.21
	Char mix (5)	0.19

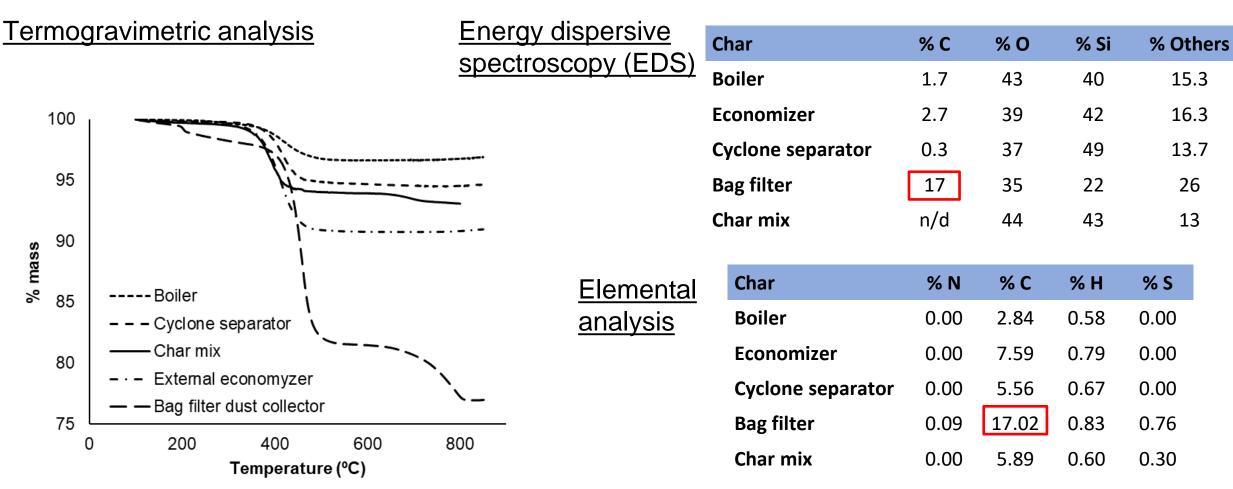

Fondo 44

88 150 297 590 1000

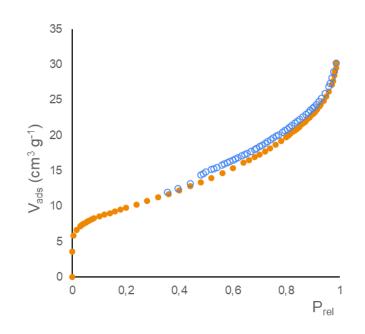

Size distribution (µm)

Scanning electron microscopy(SEM)




Cyclone separator

Bag filter



Characterization of rice husk chars

Characterization of rice husk chars

BET area and pore volume

Char	BET area (m² / g)	Microporous volume (cm ³ / g)	Total pore volumen (cm ³ / g)
Boiler	11	0.0048	0.018
Economizer	56	0.011	0.055
Cyclone separator	54	0.01	0.06
Bag filter	45	0.071	0.075
Char mix	35	0.003	0.045

X-ray diffraction (XRD)

Char	SiO ₂	
Boiler	Crystalline	
Economizer	Amorphous	
Cyclone separator	Amorphous	
Bag filter	Amorphous	
Char mix	Amorphous	

Adsorption capacity / Adsorption kinetics

Methylene blue

Initial concentration: 10 – 250 mg/L 80 6 Char: 100 mg q_{max} (mg/g) Char 70 $q(t) = \frac{q_e^2 \ k_2 \ t}{1 + q_e \ k_2 \ t}$ Volume: 50 mL 5 **Boiler** 60 10.6 4 50 **Economizer** 42.4 q_e (mg g⁻¹) ഗ g⁻¹) 40 Ĕ Cyclone separator 28.2 30 **Bag filter** 56.5 2 20 Char mix 34.9 Bag filter dust collector 1 ▲ Char mix 10 Activated carbon 126.9 Activated carbon Rice husk char (*) 246 0 0 0 500 1000 1500 2000 Time (min) Phenol C_{n} (mg/L) k₂ (g/mgmin) q_{a} (mg/g) Phenol

Char mix

Pseudo second order model

10

20

50

2.5

2.79

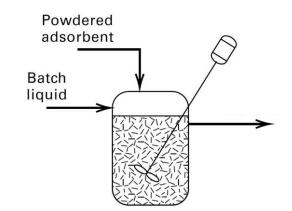
5.52

Initial concentration: 10-1000 mg/L

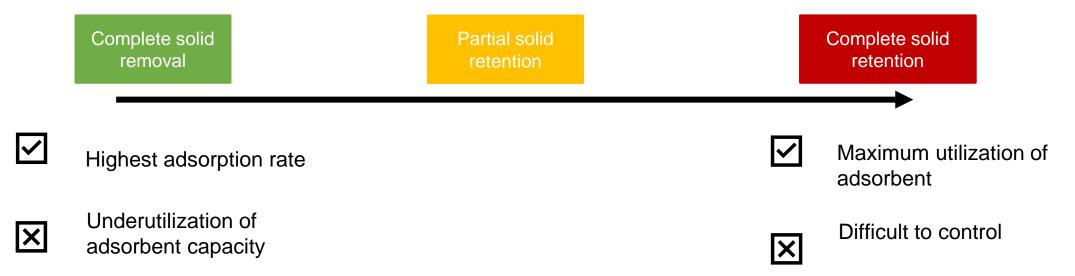
Char: 100 mg Volume: 50 mL

Char	q _{max} (mg/g)	
Bag filter	13.4	
Char mix	8.3	
Activated carbon	102	

* Lacuesta, J., et al. (2020). Rice Husk Bio-Chars as Adsorbent for Methylene Blue and Ethinylestradiol from Water. Journal of Renewable Materials, 8(3), 275.

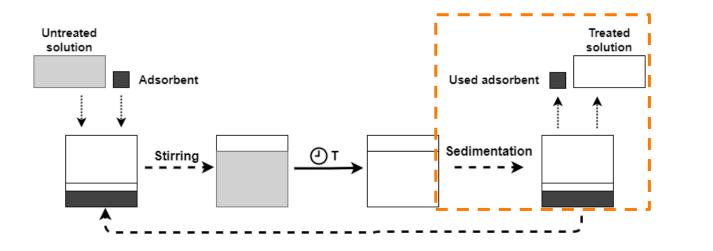

0.068

0.0071


0.013

ဗီ

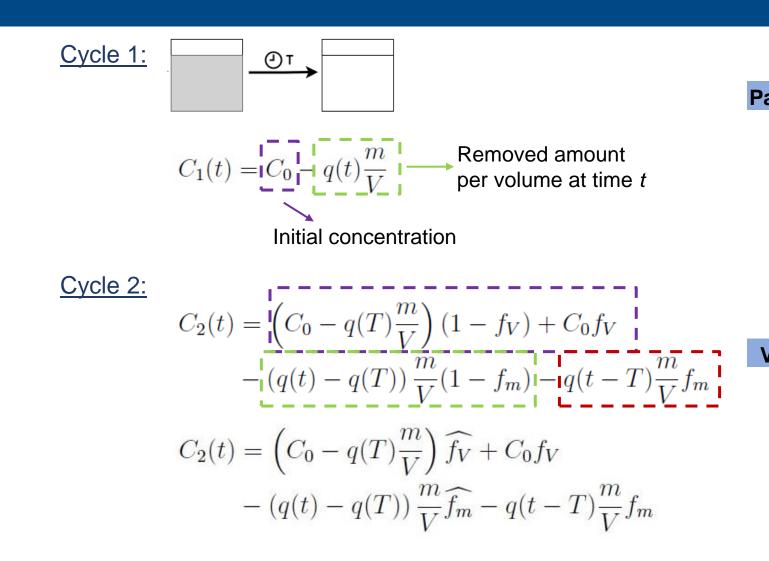
Stirred tank adsorption reactors-batch mode



Seader et al (2011), Separation Process Principles

Parcially conserved batch (PCB)

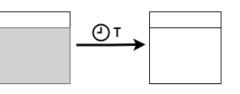
Partial solid retention


$$f_m = \frac{m_e}{m}$$

 $f_V = \frac{V_e}{V}$

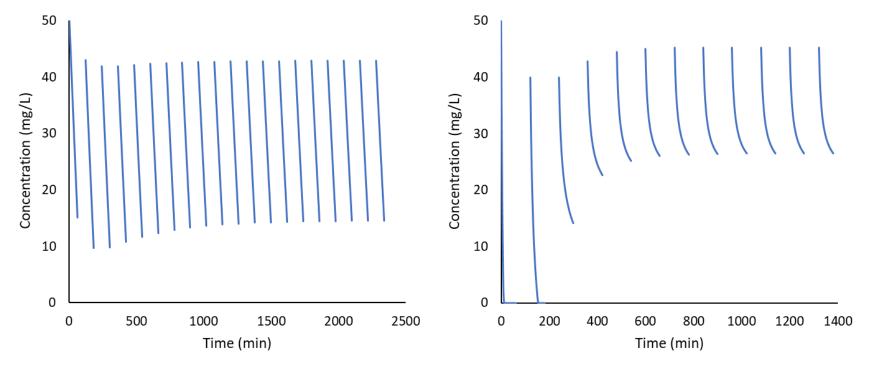
Fraction of adsorbent removed

Fraction of liquid removed


Mathematical dynamic model

arameters	
C_{o}	Initial concentration of the solution (mg/L)
m	Adsorbent mass (g)
V	Reactor volumen (L)
m _e	Adsorbent mass removed each cycle (g)
V _e	Treated solution volumen removed from the reactor each cycle (L)
$\widehat{f_V}$	$1 - f_V$
$\widehat{f_m}$	1 - <i>f_m</i>
Variables	
q(t)	Amount adsorbed at time t (mg/g)
$C_{i}(t)$	Compound concentration inside the reactor during cycle <i>i</i> at time t (mg/L)

Mathematical dynamic model


Cycle n:

$$C_{n}(t) = C_{0}\widehat{f_{V}}^{n-1} + C_{0}f_{V}\sum_{j=0}^{n-2}\widehat{f_{V}}^{j} - q(T)\frac{m}{V}\left(\widehat{f_{V}} - \widehat{f_{m}}\right)\left(\widehat{f_{V}}^{n-2} + f_{m}\sum_{j=0}^{n-3}\widehat{f_{V}}^{j}\right)$$

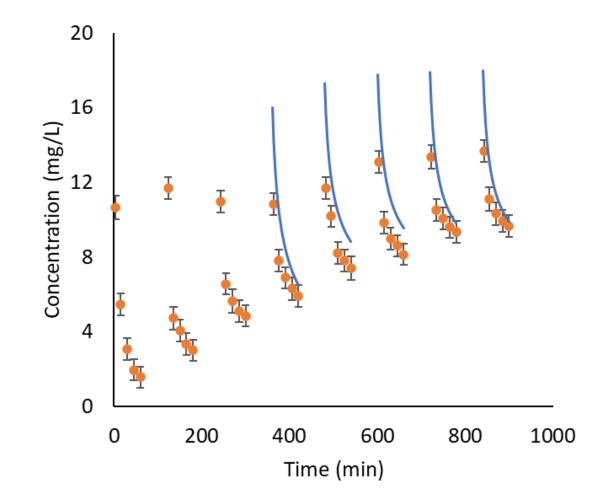
$$- q(2T)\frac{m}{V}\left(\widehat{f_{V}} - \widehat{f_{m}}\right)\widehat{f_{m}}\left(\widehat{f_{V}}^{n-3} + f_{m}\sum_{j=0}^{n-4}\widehat{f_{V}}^{j}\right)$$

$$- q(3T)\frac{m}{V}\left(\widehat{f_{V}} - \widehat{f_{m}}\right)\widehat{f_{m}}^{2}\left(\widehat{f_{V}}^{n-4} + f_{m}\sum_{j=0}^{n-5}\widehat{f_{V}}^{j}\right)$$

$$- \cdots - q((n-1)T)\frac{m}{V}\left(\widehat{f_{V}} - \widehat{f_{m}}\right)\widehat{f_{m}}^{n-2}$$

$$- q(t)\frac{m}{V}\widehat{f_{m}}^{n-1} - q(t-T)\frac{m}{V}f_{m}\widehat{f_{m}}^{n-2} - q(t-2T)\frac{m}{V}f_{m}\widehat{f_{m}}^{n-3}$$

$$- \cdots - q(t - (n-1)T)\frac{m}{V}f_{m}$$

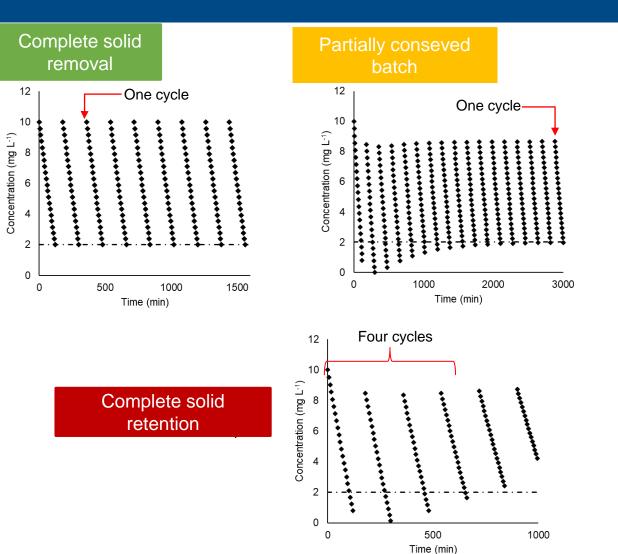

Mathematical dynamic model

Considering the two most common adsorption kinetic models (pseudo first order -left- and pseudo second order -right-), the concentration inside the reactor is presented:

After several cycles the concentration at the end of each cycle does not change

Lab scale experiment

Periodic final concentration (C_p)


Pseudo first order (PFO)

Pseudo second order (PSO)

$$C_p(T) = C_0 - \frac{m f_m q_e(e^{kT} - 1)}{V f_V e^{kT} + f_m - 1} \qquad C_P(T) = C_0 - \frac{m f_m^2}{V f_V} \sum_{j=1}^{\infty} \left[\frac{q_e^2 k j T}{1 + q_e k j T} (1 - f_m)^{j-1} \right]$$

- Simulation: Calculate $C_{P_{i}}$ knowing C_{0} , m, V, f_{m} , f_{V} , T
- Design of the PCBr: calculate reactor operating parameters (m, V, f_m, f_V, T) to obtain a set value for C_P

Comparing different operating modes

	Complete solid removal	Partially conserved batch	Complete solid retention
Initial adsorbent mass (kg)	63	72.6 (calculated using C _p equation)	72.6
Adsorbent added (kg)	63 (one cycle)	14.5 (one cycle)	72.6 (four cycles)
Adsorbent mass added per unit of treated water (kg m ⁻³)	0.420	0.116	0.145

V= 150 m3 T= 2 h

 Rice husk chars have different adsorption properties depending where they are generated

Rice husk chars can be used to remove compounds from water

 The proposed reactor operation allows to better control the adsorption process, and can reduce the adsorbent mass used

Thank you for your attention!

ACKNOWLEDGEMENT

AGENCIA NACIONAL DE INVESTIGACIÓN E INNOVACIÓN