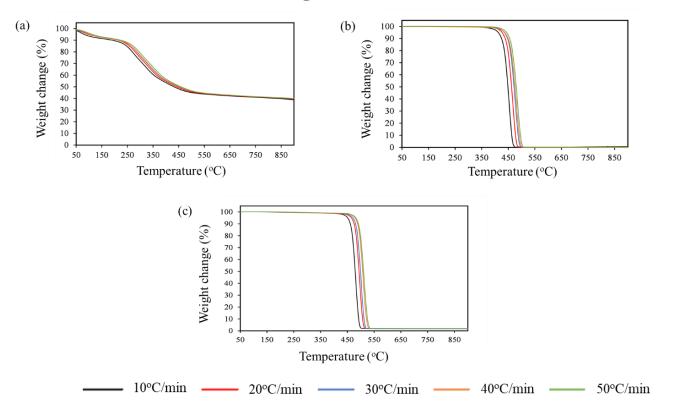
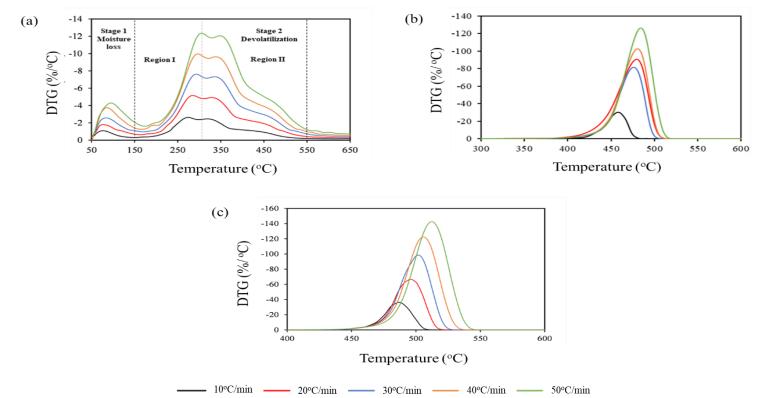


Synergistic Interactions between Sewage Sludge and Plastics during Co-pyrolysis


Crystal C. Y. Ling and Sam F. Y. Li

© Copyright National University of Singapore. All Rights Reserved.

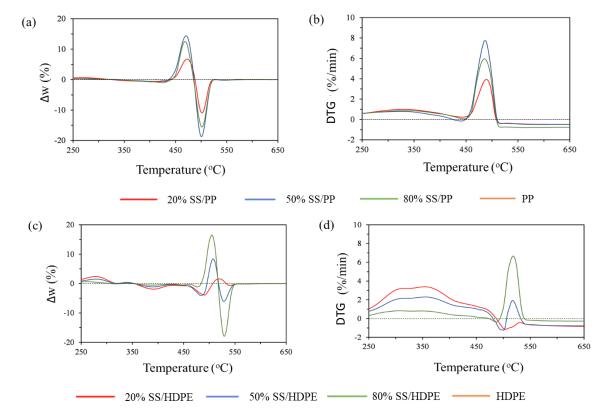
Introduction


- Sewage sludge (SS) is a heterogeneous mixture of organic and inorganic constituents, produced as a by-product of wastewater treatment processes.
- While pyrolysis of SS would reduces waste going to landfill and greenhouse gas emission, effective energy recovery from SS is hindered by its low bio-oil composition.
- During co-pyrolysis, 2 or more materials are mixed and pyrolyzed together, which interacts to affect overall product composition and distribution.
- Polyolefins, such as polypropylene (PP) and high-density polyethylene (HDPE), have high H content in its polymeric structure.
- Hence, co-pyrolysis of PP and HPDE with SS is studied to elucidate synergistic effects on activation energy and product distribution.

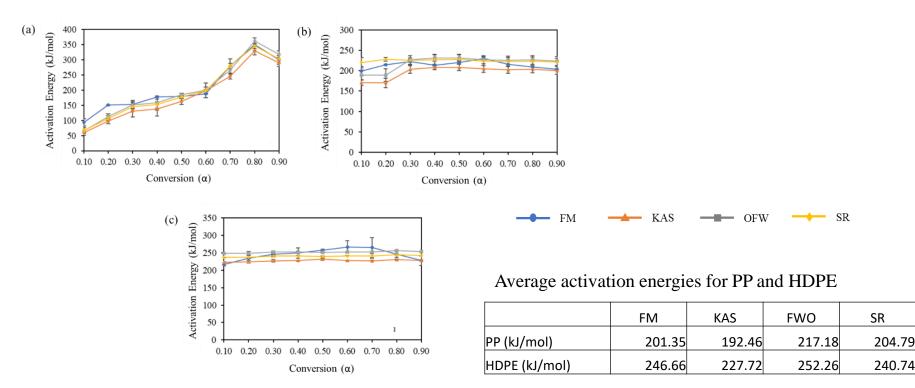
Thermogravimetric curves

Thermogravimetric curves of (a) SS, (b) PP and (c) HDPE between $50 - 900^{\circ}$ C at heating rates 10, 20, 30, 40, 50° C/min under constant N₂ flow (100 mL/min)

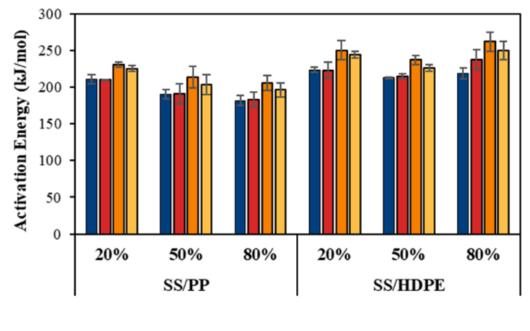
Differential thermogravimetric (DTG) curves


Differential thermogravimetric (DTG) curves of (a) SS, (b) PP and (c) HDPE between $40 - 900^{\circ}$ C at heating rates 10, 20, 30, 40, 50°C/min under constant N₂ flow (100 mL/min)

Co-pyrolysis TGA and DTG curves


Co-pyrolysis TGA and DTG curves of 20%, 50%, and 80% SS/PP and SS/HDPE

Synergistic analysis of overall volatile conversion and rate of devolatilization


Synergistic analysis of overall volatile conversion and rate of devolatilization during SS/PP (a, b) and **SS/HDPE co-pyrolysis** © Copyright National University of Singapore, All Rights Reserved.

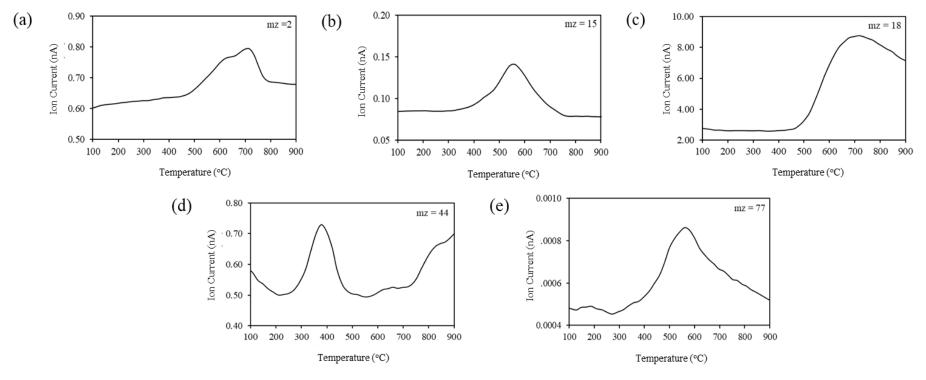
Activation energies of SS, PP, and HDPE

Activation energies (kJ/mol) of SS, PP, and HDPE pyrolysis as determined by iso-conversional model-free methods: Friedman (FM), Flynn-Wall-Ozawa (FWO), Kissinger-Akarhira-Sunose (KAS), and Starink (SR).

Average activation energy of co-pyrolysis determined with model-free methods

■FM ■KAS ■FWO ■SR

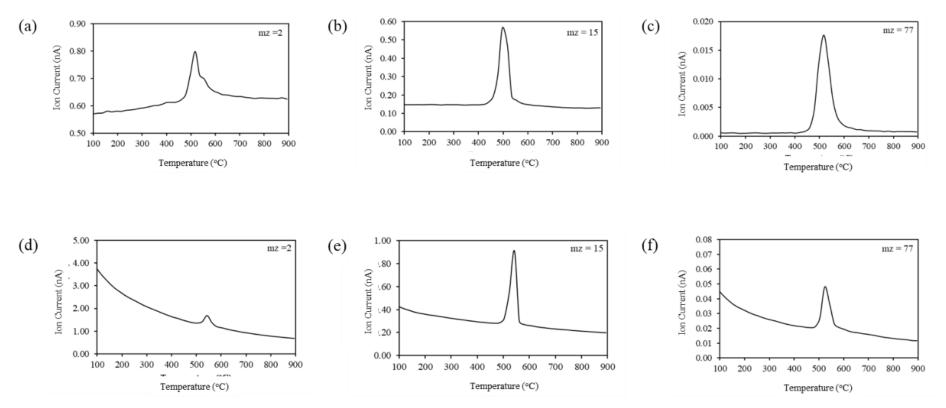
Average activation energy (kJ/mol) of co-pyrolysis determined with iso-conversional model-free methods: Friedman (FM), Flynn-Wall-Ozawa (FWO), Kissinger-Akarhira-Sunose (KAS), and Starink (SR).


© Copyright National University of Singapore. All Rights Reserved.

Activation energies of co-pyrolysis determined with model-free methods

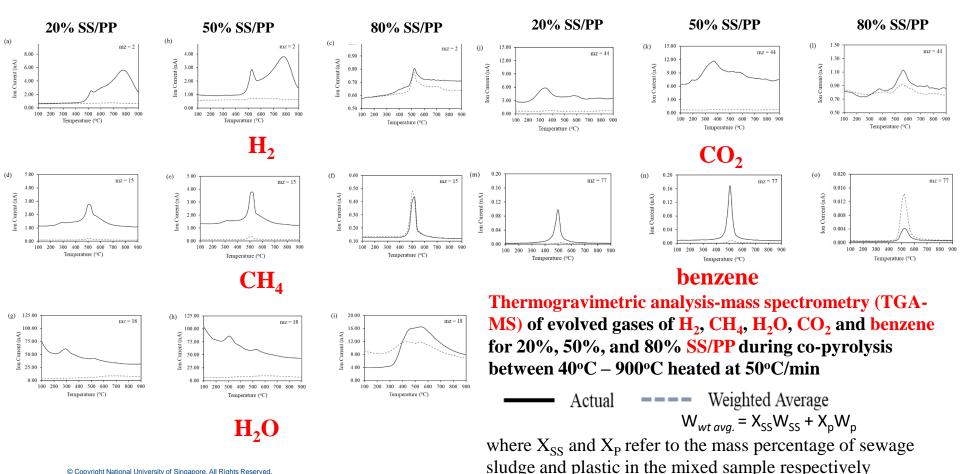
	Friedman (FM)	Kissinger- Akahira-Sunose (KAS)	Flynn-Wall- Ozawa (FWO)	Starink (SR)
	E _A (kJ/mol)	E _A (kJ/mol)	E _A (kJ/mol)	E _A (kJ/mol)
SS/PP				
20%	211.39 <u>+</u> 6.14 ^{‡*}	210.87 <u>+</u> 0.05 [‡]	230.89 <u>+</u> 3.26 [‡]	225.62 <u>+</u> 4.34 [‡]
50%	190.71 \pm 6.51 $^{+*}$	191.16 <u>+</u> 13.89 [‡]	213.36 <u>+</u> 14.62 [‡]	203.62 <u>+</u> 13.95 [‡]
80%	181.95 <u>+</u> 6.59 ^{‡*}	182.99 <u>+</u> 10.56 ^{‡*}	205.76 <u>+</u> 10.50 [‡]	196.36 <u>+</u> 10.01 ^{‡*}
SS/HDPE				
20%	223.65 <u>+</u> 3.25	223.24 ± 11.07‡	250.46 <u>+</u> 13.15 [‡]	244.50 <u>+</u> 4.65 [‡]
50%	$213.05 \pm 1.00^{+*}$	214.90 ± 3.89 [‡]	237.25 <u>+</u> 6.15 [‡]	226.33 <u>+</u> 4.72 [‡]
80%	218.91 <u>+</u> 7.85 ^{‡*}	237.69 <u>+</u> 13.71	262.09 ± 12.76	250.08 ± 12.14

* Lower than individual feedstock [‡] Lower than weighted average


Evolved gas analysis during pyrolysis of sewage sludge (SS)

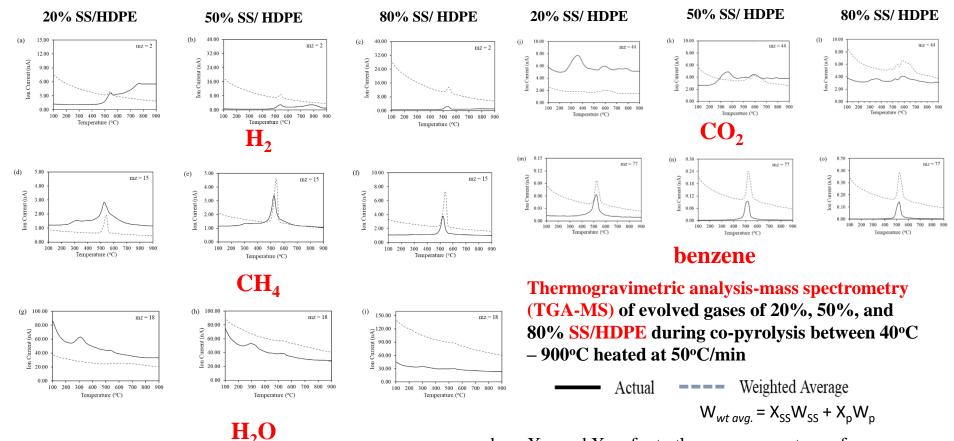
Evolution of (a) hydrogen (H_2 , m/z = 2), (b) methane (CH_4 , m/z = 15), (c) water (H_2O , m/z = 18), (d) carbon dioxide (CO_2 , m/z = 44) and (e) benzene (C_6H_6 , m/z = 77) during SS pyrolysis monitored with thermogravimetric analysis-mass spectrometry (TGA-MS).

© Copyright National University of Singapore. All Rights Reserved


Evolved gas analysis during pyrolysis of PP and HDPE

Evolution of hydrogen (H_2 , m/z = 2), methane (CH_4 , m/z = 15) and benzene (C_6H_6 , m/z = 77) during (a-c) PP and (d-f) HDPE pyrolysis monitored with thermogravimetric analysis-mass spectrometry (TGA-MS)..

© Copyright National University of Singapore. All Rights Reserved.


Evolved gas analysis during co-pyrolysis of SS and PP

© Copyright National University of Singapore, All Rights Reserved.

12

Evolved gas analysis during co-pyrolysis of SS and HDPE

where X_{SS} and X_P refer to the mass percentage of sewage sludge and plastic in the mixed sample respectively 13

Summary

- Co-pyrolysis of sewage sludge (SS) with polypropylene (PP) and high density polyethylene (HDPE) were studied
- Synergistic reductions in activation energy were observed during co-pyrolysis
- Co-pyrolysis increased volatile conversion for SS/PP, and only some volatile components for SS/HDPE.
- Different interactions occurred during co-pyrolysis of sewage sludge with different plastics

This research is supported by the National Research Foundation, Singapore, PUB, Singapore's National Water Agency under its Environment & Water Research Programme/Urban Solutions & Sustainability (PUB-1804-0076) and National Environment Agency (USS-IF-2021-2). THANK YOU!