

Microwave-assisted pyrolysis valorisation of unsortable thermoplastic waste

A. Fresneda-Cruz, G. Murillo, C. González-Niño, M.B. Figueiredo, I.Julian

CIRCE Technology Centre

22/06/23

Project Info

Title: New technologies to integrate PLASTIC waste in the Circular Economy - PLASTICE

Objective: To develop and upscale new plastic valorization and upcycling processes. Four different pilot demonstrators will be implemented for each technology.

Granting authority: European Health and Digital Executive Agency (HADEA)

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement N° 101058540.

Microwave Heating: Identified Potential

Microwave Heating: identified potential

Technical advances, barriers, and solutions in microwave—assisted technology for industrial processing, Chemical Engineering Research and Design, Volume 181, 2022,

Dielectric Susceptibility of materials

Microwave Absorption Capacity

Material	Dielectric Loss Tangent
Activated carbon	0.62
SiC	0.02-1.05
Wood	0.11
Cellulose	0.035
Hemicellulose	0.062
Lignin	0.052
Glass	0.005-0.010
Polyestirene (PS)	0.002-0.003
Polyethylene (PE)	0.001-0.002

 $\tan \delta = \frac{\varepsilon''}{\varepsilon'}$

Microwave assisted Pyrolysis

Innovation of MW-assisted Pyrolysis: Set-up configuration

Innovation of MW-assisted Pyrolysis: Set-up configuration

10

Pros

- Products quality improved
- Energy efficiency
- Reduce pre-treatment requirements
- Fast, uniform and volumetric heating
- Straightforward electrification

Innovation of MW-assisted Pyrolysis: Set-up configuration

11

Cons

Design Limitations

- Triggering temperature measurements
- Microwave susceptors are required
- Greatly complex upscaling

Thermal distribution: Infrared indirect temperature₁₂ measures

Simulation methodology for microwave field and thermal distributions

H. Goyal, D.G. Vlachos, "Multiscale modeling of microwave-heated multiphase systems" Chemical Engineering Journal, vol 397, 2020

Experimental Validation of Microwave-heating and thermal distribution

Synthetic oil results and perspectives

Pyrolysis-oil chemical composition and GC-MS Results

Experimental findings by MW-asssited Pyrolysis Vs Conventional Pyrolysis

- > Larger HC chains
- > Presence of diolefins / neglible presence of aromatics or oxygenated products
- > Larger olefin/paraffin ratios
- 40-60%wt oil

Perspectives: Pilot Upscaling

Main challenges for microwave-assisted systems scalability

1. Complex design of the different involved parts, e.g. magnetron or solid-state generator, waveguides, resonator cavity, chokes, antennas

2. High price of some parts of the assembly

3. Eventual malfunctions such hot spots formation, thermal runaway or arcing issues

4. Incompatibility of microwave irradiation with some materials, specific material geometries and moving parts

A. Fresneda-Cruz, I.Julian. Advances in Microwave-assisted Heterogeneous Catalysis, Royal Society of Chemistry, 2023. In press

Fluidized bed reactor

Conical spouted bed reactor

Rotary kiln

Progress in Energy and Combustion Science 93 (2022) 101021

Microwave selective heating results in unbeatable energy density, greatly improving energy efficiency of waste valorization processes

Pyrolysis oils yields and hydrocarbons distribution can be controlled by the temperature and residence time of the MWassisted pyrolysis

P

18

Complex particle mediums were sucessfully simulated and modeled

Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal 2021;418

PLASTICE

Presenter: Alejandro Fresneda Email: afresneda@fcirce.es Organization: CIRCE

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement n° 101058540.