



### P. Delgado-Plana<sup>1,2</sup>, S. Bueno-Rodríguez<sup>1,2</sup>, L. Pérez-Villarejo<sup>1,2</sup>, <u>D. Eliche-Quesada<sup>1,2</sup></u>

<sup>1</sup>Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Jaén, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaén, Spain

<sup>2</sup>Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain

#### deliche@ujaen.es





Unión Europea Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"



#### Contents

#### Introduction

#### **Objetives**

## **Materials and methods**

#### **Results and discussion**

#### Conclusions



Contents

3

#### Introduction

**Objetives** 

Materials and methods

**Results and discussion** 

#### Conclusions



#### Introduction

# High energy consumption

High consuption of mineral resources



High emissions of gases, mainly carbon dioxide (5-7 % CO<sub>2</sub>)

**Cement** is one of the most widely used building materials



CEMENT PORTLAND PRODUCTION

- -Low Price, economical material
- Versatile
- Ability to harden under water



5

#### **Cement industry more environmentally friendly**



#### **Alkaline-activated cements or geopolymer cements**





6





# **Commercial activators: Problems-Challenges**

**Emissions** 



Geopolymers

Fly ash, slag Sodium hidroxides SODIUM SILICATES Coarse aggregates Fine aggregates Additions Dosage Curing Transport Commissioning



OPC

Geopolimeros

Need to look for alternative activators to commercial alkaline silicates in order to produce nearzero carbon footprint cements

7

Turner, L.K., Collins, F.G., 2013; Torres-Carrasco et al., 2015



# **Alternative activators. Solutions-Proposals**

#### Silica-based alternative activators

#### Alkaline hidroxide + Silica-rich raw material

 $2NaOH + SiO_2 \xrightarrow{f^{\circ}C} Na_2SiO_3 + H_2O$  **Alkaline silicate** 

#### Silica-rich raw materials

8





Contents

9

#### Introduction

## **Objetives**

**Materials and methods** 

#### **Results and discussion**

#### Conclusions



10

## Objetive

The **activation** of spent filtering earth from the oil refining industry (SFE) by the use of alternative activators made from waste glass (WG) with different dosages of alkali to obtain geopolymer cements with near **zero carbon footprint**.

#### Contents

11

## Introduction

### **Objetives**

## **Materials and Methods**

#### **Results and discussion**

## Conclusions



#### 12

## **RAW MATERIAL: SPENT FILTERING EARTHS (SFE)**

Filtering earths are widely used in the agri-food industry with the problem that the end-of-life material is a useless waste.





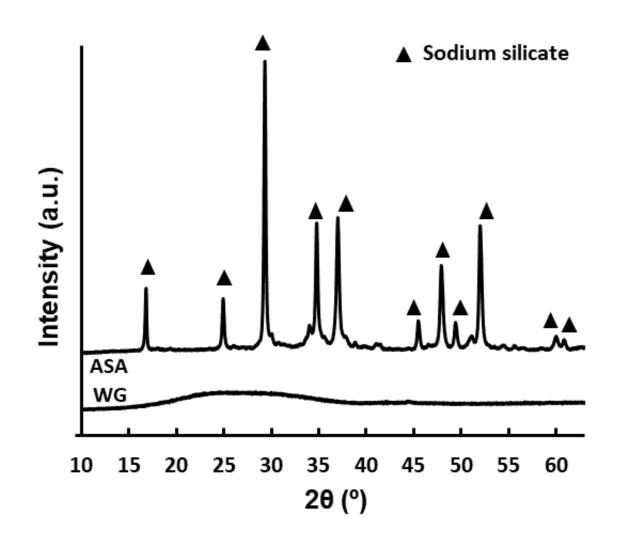
13

#### **RAW MATERIAL: SPENT FILTERING EARTHS (SFE)**





#### 14


### SYNTHESIS OF ALTERNATIVE SOLID ACTIVATOR





15

#### **XRD** study





16

#### Manufacture of the geopolymers cements





17

#### Manufacture of the geopolymers cements

| Sample    | SFE<br>(g) | Alternati<br>ve solid<br>activator<br>(g) | Sodium<br>hidroxide<br>(NaOH)<br>(g) | Sodium<br>silicate<br>(Na <sub>2</sub> SiO <sub>3</sub> )<br>(g) | Water | Na <sub>2</sub> O<br>(%) |
|-----------|------------|-------------------------------------------|--------------------------------------|------------------------------------------------------------------|-------|--------------------------|
| SFE-10    | 300        | 72.6                                      | -                                    | -                                                                | 280.9 | 10                       |
| SFE-20    | 300        | 145.1                                     | -                                    | -                                                                | 291.8 | 20                       |
| SFE-30    | 300        | 217.7                                     | -                                    | -                                                                | 302.6 | 30                       |
| SFE-SS-20 | 300        | -                                         | 55.66                                | 199.2                                                            | 176.7 | 20                       |

Índice

18

#### Introduction

## **Objetives**

## **Materials and methods**

#### **Results and discussion**

#### Conclusions



#### **Bulk density**



Increase of BD with increasing alkali dosage from 10 to 20 %

19

is

- Increase up to 30 % produced cements with a lower BD
- **Commercial silicate results** in specimens with lower BD than obtained with ASA.



#### Water absorption



WA is very high with the addition of 10 %  $Na_2O$ . The addition of 20 %  $Na_2O$  resulted in a significant reduction of WA up to 13 %, with a slight increase with the addition of 30 % and when commercial activator is used

20

It is observed that the **open porosity** of the cement **is reduced** with the use of **20 % Na<sub>2</sub>O** because the **capillary pores** are gradually **filled** by **the formation of amorphous reaction products**.



### Flexural and compressive strength





## Flexural and compressive strength





## Flexural and compressive strength





### Flexural and compressive strength



The mechanical properties of the geopolymers using the ASA are superior to those obtained for the commercial activator.





Shift of the halo in the geopolymers tower lower values of  $2\theta$ 

22

Formation of an alkaline aluminosilicate gel (N-A-S-H gel), the main reaction product



22

The appearance of new zeolite-type diffraction **XRD** peaks which is a crystalline phase from the formation of the geopolymer gel **C: Cristobalite** Q: Quartz Z: zeolite SFE-SS-20 Intensity (a.u.) **SFE-30** SFE-20 **SFE-10** SFE CCC 25 10 15 20 30 35 40 45 50 55 60 65 70 2 theta (°)







Wavenumber (cm<sup>-1</sup>)

This band shifts towards lower wavenumbers in geopolymers indicating the formation of sodium aluminosilicate gel





Índice

24

#### Introduction

## Objetives

## **Materials and methods**

#### **Results and discussion**

#### Conclusions

#### 25

## Conclusions

**ASA** can be used in the manufacture of **SFE cements**.

The dosage of the alternative alkaline activator has a significant influence on the physical and mechanical properties of geopolymers using SFE as a precursor.

At a low alkali dosage of 10 % Na<sub>2</sub>O and a high dosage of 30 % Na<sub>2</sub>O SFE geopolymers show a low amount of amorphous reaction products, high porosity and poor flexural and compressive strength.

The optimal amount of alkali (20 % Na<sub>2</sub>O) promotes the geopolymerisation reaction resulting in a denser structure with lower porosity improving the mechanical properties of SFE geopolymers.

**One-part activation of SFE** using an **solid alternative activator made** from **glass** and **sodium hydroxide results** in **geopolymers** with **higher mechanical properties** than **two-part activation** using a **sodium silicate and sodium hydroxide solution** as a **commercial activator**.





deliche@ujaen.es

# Thank you very much for your attention!

# **Acknowledgments**

This research was funded by the project Circular "GEOCIRCULA: Economy the in manufacture of new geopolymeric composites: towards the goal of zero waste" (P18-RT-3504), funded by the Consejería de Economía, Conocimiento y Universidad of the Junta de Andalucía, with cofinancing from the European Union through FEDER funds







Unión Europea Fondo Europeo de Desarrollo Regional 'Una manera de hacer Europa"