

Evaluation of the effect of different soil amendment

Hana Stiborová

University of Chemistry and Technology, Prague

Strategies for improvement the soil quality and increasement crop yields

- Crop rotation
- Breeding new cultivars
- Usage of biofertilizers microbial inoculant of rhizobium, plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi
- Usage of fertilizers
 - Mineral or synthetic
 - Organic stabilized sewage sludge (biosolids), manure waste material

Biochar - carbon rich material made by pyrolysis from organic waste

Impact on soil quality

Framework Directive on Waste (2018/851/EC)

'3R's' - reduce, recycle, reuse

- Precautions pollution

Experiment no. 2

Biochar

+ affect soil pH, carbon sequestration, soil structure, water holding capacity,
'3R's' principles
- various properties, pollutants?

Manure

Sewage sludge-

+ high quantities, rich on

nutrients, soil structure,

- pathogenic MO, antibiotic

resistence genes, pollutants

Biosolids

'3R's' principles

 + high quantities, rich on nutrients, soil structure, '3R's' principles

- pathogenic MO, antibiotic resistence genes

Experiment no.1

Mineral fertilizers NPK

- + define composition
- excces of nitrogen (contamination of water suplies), no effect on soil structure, Haber process, P

Experiment no. 1 - impact of manure, sewage sludge and mineral fertilizers

Experimental fields

- 1. Chernozem (Praque -Suchdol)
- 2. Luvisol (Hněvčevec)
- 3. Cambisol (Lukavec)
- 4. Cambisol (Humpolec)
- Experimental design started in 1996

A) Amendments

- 1. CF- control soil
- 2. MF- manure 330 kg N/ha
- 3. SF sewage sludge (biosolids) 330 kg N/ha
- 4. SF3x -sewage sludge (biosolids) 990 kg N/ha
- 5. NPK NPK 330-90-330 kg/ha

Manure and sewage sludge (biosolids) - thermophilic stabilization

B) Crop rotation

- 1. potatoes (Solanum tuberosum L.)
- 2. winter wheat (Triticum aestivum L.)

Soil types

3. spring barley (Hordeum vulgare L.)

Impact of long-term fertilizers on:

- Soil chemistry ©
- Soil microbial communities ③
- Enzyme soil activities ③
- Endophytic microorganisms ©

- Occurence of pathogenic microorganisms
- Presence of pollutants
- Antibiotic resistance genes

Did fertilization influence the presence of human pathogens?

- I9 potencial pathogenic bacteria (soils, potatoe tubers) base on 99% identity of 16S rRNA ASV and sequence of pathogenic type strain
- Majority ubiquitous in control samples

The impact of fertilization on the occurence of ARGs

Chernozem Prague-Suchdol Selected ARGs: *tetA* and *tetW* - tetracycline *sul1* and *sul2* - sulphonamide *ermB* - erythromycin *vanA* - vancomycin *int11* - integron genetic element

Fertilizers temporarily increased some ARGs.

Fertilization type:

- 1. CF control soil
- 2. MF manure 330 kg N/ha
- 3. SF sewage sludge 330 kg N/ha
- 4. SF3 sewage sludge 990 kg N/ha

Stiborova et al., Agronomy-Basel 2021, 11 (7)

Does fertilization increase the contamination?

- Analyzed samples from four locations, all fertilization regimes
- Sewage Sludge Directive 86/278/EEC heavy metal concentrations
- EU countries have implemented stricter values for selected contaminants, Czech Republic metals, PCBs and AOX (absorbable organic halogens)
- Monitored organic pollutants PCBs, PAHs, organohalogenated pesticides (DDT and metabolites, HCH, HCB), polyfluoroalkylated substances (PFASs), brominated flame retardants (PBDEs and HBCD), musk pollutants, antibiotics (tetracyclines, sulfonamides, fluorochinons)
- Monitored heavy metals Cu, Pb, Zn

Soils were repeatedly fertilized from 1996.

Fertilization did not increase the concentration of the pollutants on environmental risk levels.

Pulkrabova et al., J. Soil Sed., 2018; Kracmarova et al., Environmental Microbiome 2022, 17, 13

Conclusion - I. part

Usage of manure and sewage sludge (biosolids) in agriculture can be safe

- Fertilization infuenced the soil chemistry without the negative impact on the presence of organic pollutants and metals
- The connections among human pathogenic microorganism occurrence and fertilization regimes were not verified
- Fertilization by manure and sludge increased ARGs (sul1 and tetW)
- Manure and sludge were stabilized under thermophilic conditions

Spreding of ARGs is emergent problem - some indicator ARGs should be included in the Sewage Sludge Directive 86/278/EEC

Impact on soil quality

Experimental design

- Each variant: 3 biological replicates; controls: 6 biological replicates
- Sampling points: 3 days, 2 weeks, 1 months, 6 months, 12 months

=> Altogether 300 samples

Characterization of biochars

Wood chips - 300°C Macroporous structure Sizes from 2 µm to 30 µm Specific surface area 1 m²/g Total volume of pores 1.3 cm³/g Wood chips - 500 °C Microporous structure Sizes from 0.2 µm to 30 µm Specific surface area 198 m²/g Total volume of pores 1.6 cm³/g

Bone (waste after meat separation) - 300°C

Bone - 500 °C Mezoporous structure Sizes from 0.2 µm to 30 µm Specific surface area 126 m²/g Total volume of pores 0.6 cm³/g

The origin of feedstock and temperature of pyrolysis affected the structure of biochar

Biochar - from waste after meat separation (bone char) had higher content of macronutrients (Ca, K, P, S, Mg)

Biochar - Impact on soil properties and microbial communities

		Days	Control	Bone char			
			-	300 °C		500 °C	
			-	2 %	5 %	2 %	5 %
Ca	mg/kg	7	2924	3145	3535	3922	4882
		360	3257	3800	4407	4160	5893
K	mg/kg	7	243	282	339	365	531
		360	281	345	465	368	623
Mg	mg/kg	7	302	297	309	362	442
		360	309	325	376	350	485
Р	mg/kg	7	93.7	284	482	643	1262
		360	110	471	829	788	1703
S	mg/kg	7	13.2	19.8	36.1	39.2	71.7
		360	29.6	52.4	82.7	60.6	117

Increase of:

- Phosphate solubilizing activity
- Nitrogen fixators
- Bone char 300°C decreased diversity of soil microorganisms

Biochar: BWC - beach wood chips WMSM - bone char

Szakova et al., JCTB, 2023 doi.org/10.1002/jctb.7421

Conclusion - Biochar

Origin of feedstock and pyrolysis temperature influence the structure and composition of biochars

- Their effect on soils chemistry an soil microbial communities are different
- Higher temperature (500 °C) for pyrolysis of both organic wastes, WMSM (waste after mechanically separated meat) and BWC (beech wood chips), was found to address changes in soil microbial community that reflected better soil quality.

These changes were even more visible in cambisol, than in luvisol

Funding and team collaboration

The research was funded by Czech Science Foundation projects no. 16-07441S and 19-02836S

Teams from University of Chemistry and Technology Prague

Department of Biochemistry and Microbiology Ing. Martina Kračmarová, Ing. Anežka Kodatová, Ing. Jana Karpíšková, Ing. Eliška Alexová, Dr. Michal Strejček, prof. Ing. Ondřej Uhlík, and prof. Katerina Demnerová

Department of Food Analysis and Nutrition prof. Jana Hajšlová and prof. Jana Pulkrabová

Team from Czech University of Life Sciences Prague Prof. Jiřina Száková, prof. Jiří Balík, Pavel Tlustoš, Dr. Filip Mercl

Prague, June 16 - 20, 2024

- ENVIRONMENTAL POLLUTION (SOIL, SEDIMENT, AIR POLLUTION, MARINE POLLUTION)
- BIODEGRADATION OF RECALCITRANT COMPOUNDS
- GREEN TECHNOLOGIES (BIOREMEDIATION TECHNOLOGIES), MICROALGAE-BASED BIOREFINERIES
- PHYTOREMEDIATION, PHYCOREMEDIATION, MYCOREMEDIATION AND COMPOSTING

www.biobio.vscht.cz

- WATER POLLUTION & WASTEWATER TREATMENT
- MICROBIAL DIVERSITY AND BIODEGRADATION
 OF POLLUTANTS
- PLASTICS & MICROPLASTICS: FRAGMENTATION, MONITORING, BIODEGRADATION, FATE, RECYCLING
- TOXICITY & RISK

TA

CR

WASTE MANAGEMENT (WASTE VALORIZATION)
 & CIRCULAR ECONOMY

BIOCIRKL National Centre of Competence"Biorefining and circular economy for sustainability"

SECRETARIAT OF THE SYMPOSIUM AMCA, spol. s r.o. | Academic and Medical Conference Agency Prague, Czech Republic, T: +420 221 979 351, 737 357 159, E: biobio@amca.cz, www.amca.cz

Impact of soil biochars on soil diversity

Shannon diversity index

(a) Cambisol

Wood - biochar from beech wood chips, bone - biochar from waste after meat separation, aplication rate 2% and 5% (w/w)

- treatment, time and interaction of these two factors afect the bacterial diversity, ANOVA, p < 0,001
- The diferences between the individual treatments (Tukey-HSD test)

Kracmarova et al., manuscript in preparation